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a b s t r a c t

Moment conditions for multivariate generalized Ornstein–Uhlenbeck (MGOU) processes
are derived and the first and second moments are given in terms of the driving Lévy
processes. In the second part of the paper a class of multivariate, positive semidefinite
processes of MGOU-type is developed and suggested for use as squared volatility process
in multivariate financial modeling.
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1. Introduction

For any starting random variable V0 ∈ Rd×n themultivariate generalized Ornstein–Uhlenbeck (MGOU) process (Vt)t≥0, Vt ∈

Rd×n, has been defined in [5] by

Vt :=
←

E (X)−1t


V0 +


(0,t]

←

E (X)s−dYs


(1.1)

for the driving Lévy process (Xt , Yt)t≥0 with (Xt , Yt) ∈ Rd×d
× Rd×n such that

det(I +1Xs) ≠ 0, (1.2)

which guarantees det(
←

E (X)t) ≠ 0 for all t ≥ 0.
Hereby for a semimartingale (Xt)t≥0 in Rd×d its so called left stochastic exponential

←

E (X)t is defined as the unique Rd×d-
valued, adapted, càdlàg solution (Zt)t≥0 of the SDE

Zt = I +


(0,t]
Zs−dXs, t ≥ 0, (1.3)

while the unique adapted, càdlàg solution (Zt)t≥0 of the SDE

Zt = I +


(0,t]
dXs Zs−, t ≥ 0, (1.4)

is called right stochastic exponential and denoted by
→

E (X)t .
It has been shown in [5] that, under some natural conditions, the MGOU process is the only continuous-time càdlàg

process which fulfills for all h > 0 a random recurrence equation of the form Vnh = A(n−1)h,nhV(n−1)h+ B(n−1)h,nh for random
functionals (A(n−1)h,nh, B(n−1)h,nh) ∈ Rd×d

× Rd×n such that (A(n−1)h,nh, B(n−1)h,nh)n∈N are i.i.d. distributed and A(n−1)h,nh is
non-singular for all h > 0. Conversely one can see directly from (1.1) that the MGOU process Vt fulfills

Vt = As,tVs + Bs,t , 0 ≤ s ≤ t, (1.5)
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for


As,t
Bs,t


:=


←

E (X)−1t

←

E (X)s

←

E (X)−1t


(s,t]

←

E (X)u−dYu

 , 0 ≤ s ≤ t. (1.6)

It has also been shown in [5] that the MGOU process is the unique solution of the stochastic differential equation

dVt = dUtVt− + dLt (1.7)

for the Lévy process (Ut , Lt)t≥0 in Rd×d
× Rd×n given by


Ut
Lt


:=


−Xt + [X, X]ct +


0<s≤t


(I +1Xs)

−1
− I +1Xs


Yt +


0<s≤t


(I +1Xs)

−1
− I

1Ys − [X, Y ]ct

 , t ≥ 0 (1.8)

where the relation between U and X is equivalent to stating
→

E (U)t =
←

E (X)−1t .
We refer to [5] for more details and specific examples of MGOU processes.
As already remarked in [5], MGOU processes have a wide range of possible applications, as they represent on the one

hand a multidimensional generalization of generalized Ornstein–Uhlenbeck (GOU) processes which are common to use
as volatility models but also appear in storage theory and risk theory (see e.g. [2,12,11] to name just a few), and on the
other hand MGOU processes are the continuous time analogon of multidimensional random recurrence equations, which
are widely used models in finance, biology and other fields.

To pursue the way of fitting MGOU processes to possible applications in this paper we will first investigate moment
conditions and develop the first and second moments of stationary MGOU processes. The results will be given in Section 3
while their rather technical proofs are postponed to Section 5.

In Section 4 we will then consider a way to construct positive semidefinite multivariate processes which are strongly
related to MGOU processes. The motivation for this section comes from the fact that when using (one-dimensional) GOU
processes as volatility models, the volatility process is usually described as the square-root process of a GOU process. To be
able to define a uniquely determined square-root process of a matrix valued process we thus need to determine conditions
under which the developed processes only take values in S+d , the cone of positive semidefinite matrices in Rd×d.

In his thesis [16] (also see [3,14]) Stelzer has already obtained various results on matrix valued, positive semidefinite, so
called Ornstein–Uhlenbeck-type processes. For example [16, Theorems 4.4.5 and 6.2.1], he shows that if A is some matrix
with real parts of all eigenvalues strictly negative, then the differential equation

dWt = (AWt− +Wt−AT ) dt + dLt

has a unique strictly stationary solution given by

Wt = eAtW0eA
T t
+


(0,t]

eA(t−s)dLseA
T (t−s)

=

 t

−∞

eA(t−s)dLseA
T (t−s) (1.9)

and he defines and examines properties of the square-root process ofW .
In Section 4 we will introduce the MGOU-type process

Wt =
←

E (X)−1t


W0 +


(0,t]

←

E (X)s− dYs (
←

E (X)s−)
T


(
←

E (X)−1t )T , (1.10)

driven by some Rd×d
× Rd×d valued Lévy process (Xt , Yt)t≥0. This process includes (1.9) as a special case and we will show

that the corresponding vectorized process vec(W ) is aMGOUprocess. This allows us to apply the results onMGOUprocesses
derived in [5] and in this paper. In particular we develop the stochastic differential equation ofW as given in (4.10) and give
moment conditions aswell as the first and secondmoments ofW in terms of the driving Lévy process. Finally, in Theorem4.8
we prove that W is a positive semidefinite process whenever Y is a matrix subordinator, i.e. only has positive semidefinite
increments.

2. Preliminaries and notation

Throughout this paper for any matrixM ∈ Rd×n wewriteMT for its transpose and letM(i,j) denote the component in the
ith row and jth column of M . By vec(·) we denote the vectorization operator which maps any matrix in Rd×n to the vector
in Rdn by stacking its columns one under another. Using vec−1 we regain the matrix M from vec(M). The identity matrix
will be written as I . The symbol⊗ denotes the Kronecker product. Norms of vectors and matrices are denoted by ∥ · ∥. If the
norm is not specified it is irrelevant which specific norm is used but we will always assume it to be submultiplicative. The
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