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a b s t r a c t

The empirical best linear unbiased predictor (EBLUP) in the linear mixed model (LMM)
is useful for the small area estimation, and the estimation of the mean squared error
(MSE) of EBLUP is important as a measure of uncertainty of EBLUP. To obtain a second-
order unbiased estimator of the MSE, the second-order bias correction has been derived
based on Taylor series expansions. However, this approach is hard to implement in
complicated models with many unknown parameters like variance components, since we
need to compute asymptotic bias, variance and covariance for estimators of unknown
parameters as well as partial derivatives of some quantities. A similar difficulty occurs
in the construction of confidence intervals based on EBLUP with second-order correction
and in the derivation of second-order bias correction in the Akaike Information Criterion
(AIC) and the conditional AIC. To avoid such difficulty in the derivation of second-order
bias correction in these problems, the parametric bootstrap methods are suggested in
this paper, and their second-order justifications are established. Finally, performances of
the suggested procedures are numerically investigated in comparison with some existing
procedures given in the literature.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

The linear mixed models (LMM) and the model-based estimates including empirical best linear unbiased predictor
(EBLUP) or the empirical Bayes estimator (EB) have been recognized useful in small area estimation. The typical models used
for the small area estimation are the Fay–Herriotmodel and the nested error regressionmodel (NERM), and the usefulness of
EBLUP is illustrated by Fay and Herriot [15] and Battese et al. [4]. For a good review and account on this topic, see [16,26,24].

When EBLUP is used to estimate a small area mean based on real data, it is important to estimate the mean squared
error (MSE) since it can assess howmuch EBLUP is reliable. Asymptotically unbiased estimators of theMSEwith the second-
order bias correction have been derived based on the Taylor series expansion by Prasad and Rao [25], Datta and Lahiri [11],
Datta et al. [12], Das et al. [8], Kubokawa [20] and others. A drawback of this method is that it is harder to compute the
second-order bias, variance and covariance of estimators of more unknown parameters including variance components,
and that it is troublesome to derive partial derivatives of some matrices with respect to unknown parameters. To avoid
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this difficulty, Butar and Lahiri [5] proposed the parametric bootstrap method, which is easy to implement, since we do not
have to compute the second-order bias, variance and partial derivatives. For some recent results including nonparametric
methods, see [22,17,7].

In the construction of a confidence interval based on EBLUP with the second-order accuracy, we are faced with a similar
problem. Basu et al. [3], Datta et al. [9], Kubokawa [19] derived such confidence intervals using the Taylor series expansion. To
avoid the difficulty in derivation of second-order moments, Chatterjee et al. [6], Hall andMaiti [18] proposed the confidence
intervals using the parametric bootstrap method.

A similar difficulty occurs in evaluating the bias terms of AIC and conditional AIC . The Akaike Information Criterion (AIC)
originated from [1,2] is recognized very useful for selecting models in general situations, and it is also useful for selecting
variables in LMM.When unknownparameters in themodel are estimated by themaximum likelihood estimator, the penalty
term,which is a kind of bias, is known to be 2×p for dimension p of unknownparameters.When the unknownparameters in
LMM are estimated by other estimators, however, Kubokawa [21] showed that the penalty term includes partial derivatives
of the estimator and the covariance matrix. Concerning the conditional AIC , on the other hand, Liang et al. [23] Vaida and
Blanchard [29] proposed the conditional AIC in LMM, but their derivations were limited to the cases that the parameters in
LMM are partly known. Recently, Kubokawa [21] derived the second-order bias correction for the conditional AIC , but it is
harder to compute in more complicated models.

In this paper, we treat the problemsmentioned above, and provide useful procedures based on the parametric bootstrap
methods to avoid the computational difficulties. In Section 2, we suggest the MSE estimator, the confidence interval, AIC
and the conditional AIC using the parametric bootstrap. Concerning the MSE estimation, Butar and Lahiri [5] estimated the
third term of the MSE, denoted by g3, based on the parametric bootstrap, while in this paper, we consider to estimate the
second-order approximation of g3 using the parametric bootstrap method. A similar approach applies to the confidence
interval, and we estimate the second-order correction term based on the parametric bootstrap method. This is different
from the parametric bootstrap procedure suggested by Chatterjee et al. [6] who obtained two end-points of a confidence
interval based on a distribution generated by the parametric bootstrap sampling. Simulation and empirical studies are given
in Section 3. The proofs for the second-order justifications of the proposed procedures are given in the Appendix.

2. MSE estimation, confidence interval and AIC based on the parametric bootstrap method

2.1. Linear mixed model and the parametric bootstrap method

Consider the following general linear mixed model.
[1]Model 1. An N × 1 observation vector y of the response variable has the model

y = Xβ + Zv + ϵ, (1)

where X and Z are N × p and N × M matrices, respectively, of the explanatory variables, β is a p × 1 unknown vector of
the regression coefficients, v is an M × 1 vector of the random effects, and ϵ is an N × 1 vector of the random errors. Here,
v and ϵ are mutually independently distributed as v ∼ NM(0,G(θ)) and ϵ ∼ NN(0,R(θ)), where θ = (θ1, . . . , θq)

′ is a
q-dimensional vector of unknown parameters, and G = G(θ) and R = R(θ) are positive definite matrices. Then, y has a
marginal distribution NN(Xβ, Σ(θ)) for

Σ = Σ(θ) = R(θ) + ZG(θ)Z ′.

Throughout the paper, we often drop (θ) in G(θ), R(θ), Σ(θ) and others for notational convenience.
For simplicity, it is here assumed that X is of full rank. However, the results given in this paper can be extended to the

case that X is not of full rank by modifying X and β as follows. Let r be a rank of X , and suppose that r < p. Then, X can be
written as

X = P

Er 0
0′ 0


Q ,

where P and Q are, respectively, N × N and p × p orthogonal matrices and Er = diag (λ1, . . . , λr) for positive constants
λi’s. Let P = (P1, P2) and Q ′

= (Q ′

1,Q
′

2) for N × r matrix P1 and r × p matrix Q1. Thus, Xβ can be rewritten as

Xβ = P1ErQ1β.

Hence, all the results given in this paper still hold if we replace (X, β, p) with (P1Er ,Q1β, r).
The unknown parameters in Model 1 are β and θ. When θ is known, the regression coefficients vector β is estimated by

the generalized least squares estimator given byβ(θ) = (X ′Σ(θ)−1X)−1X ′Σ(θ)−1y.

The parameter θ consists of variance components and others, and it is estimated by consistent estimatorθ based on y which
can be constructed by maximum likelihood, restricted maximum likelihood and other methods. Then, β is estimated byβ = β(θ).
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