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a b s t r a c t

This paper employs concepts from information theory for choosing the dimension of a data
set. We propose a relative information measure connected to Kullback–Leibler numbers.
By ordering the series of the data set according to the measure, we are able to obtain a
subset of a data set that is most informative. The method can be used as a first step in the
construction of a dynamic factormodel or a leading index, as illustratedwith aMonte Carlo
study and with the US macroeconomic data set of Stock and Watson [20].
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1. Introduction

With the proliferation of huge data sets a natural question to ask is howmuch information is there in a data set. Is there
an ‘optimal’ size of the data set in relation to some variable(s) of interest, in other words canwe confine attention to a subset
of the series instead of having to monitor all series in a data set? The question seems especially relevant for factor models,
which exploit the idea that movements in a large number of series are driven by a limited number of common ‘factors’. For
a recent overview, see [2].

Although convergence of factor estimates requires large cross-sections and large time dimensions, see e.g. Forni and
Lippi [9] and Bai [1], the data set need not be very large to obtain reasonably precise factor estimates. Boivin and Ng [6] and
Inklaar et al. [13] find that some 40 variables are sufficient usingMonte Carlo simulations and a comparison to conventional
NBER-type business cycle indicators, respectively. Bai and Ng [3] also conclude that the number of series need not be very
large to get precise factor estimates. The question whether we can confine attention to a subset of the variables is also
relevant for the construction of leading indexes, which aims at selecting indicators with predictive power out of a large
number of candidates too.1
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1 Another issue in the construction of (dynamic) factor models is the determination of the number of factors. For a discussion of the literature and a
criterion for the determination of the number of factors, see [19].
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Building upon Otter and Jacobs [18], the paper exploits concepts from information theory, in particular Kullback–Leibler
numbers, to analyse information in the data.2 We propose a relative information measure based on Gaussian distributed
data with a clear link to Kullback–Leibler numbers. The measure is discussed in more detail assuming an approximate
factor structure in the data. A recursive procedure including a test as to whether an additional variable adds information is
given. Ordering the series of the data set according to the measure enables us to identify a subset of a data set that is most
informative. The method can be used as a first step in the construction of a dynamic factor model or a leading index.

Our paper is related to Bai and Ng [4], who study ‘hard’ and ‘soft’ thresholding to reduce the influence of uninformative
predictors for a variable from the point of view of factor forecasting. Hard thresholding involves some pretest procedure,
while under soft thresholding the top ranked predictors according to some soft-thresholding rule are kept. Our paper fits
into the category of soft thresholding; we also seek to identify a subset of a larger data set that ismost informative. However,
in contrast with the penalized regression models studied by Bai and Ng [4], the Least Absolute Shrinkage Selection Operator
(LASSO) model of Tibshirani [22] and the elastic net rule of Zou and Hastie [24], our method is based on a quantitative
measure of information adopting a factor model framework and does not rely on an external regression method.

We illustrate the conceptswith aMonte Carlo simulation andwith themacroeconomic data set of Stock andWatson [20],
which consists of 132monthlyUS variables and runs from1959–2003.We find that relative information is indeedmaximized
for a limited number of series. In the Stock and Watson data set relative information is maximized for 40–50 series, if we
are interested in modelling industrial production and CPI inflation.

The paper is structured as follows. Section 2 discusses our relative information measure, how it works out assuming an
approximate factor structure in the data, and presents a test procedure. After a Monte Carlo study in Section 3, we apply our
method to the US data set of Stock and Watson [20] in Section 4. Section 5 concludes.

2. Information in data

2.1. Kullback–Leibler numbers and information

Let f1(x̃): x̃ ∼ NN

0, Γ = CΛC ′


be the density function of an N-dimensional data vector x (time index suppressed),

then f1(x): x ∼ NN (0, Λ) where x = C ′x̃. Let f2(x̃): x̃ ∼ NN (0, IN). Then f2(x): x ∼ NN (0, IN) with x = C ′x̃. The so-called
Kullback–Leibler numbers are defined as
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and G = G1 +G2 is the measure of information for discriminating between the two density functions with G = 0 in the case
of f1(x) = f2(x) and G = ∞ in case of perfect discrimination; see [23, p. 245]. For a general background, see [7].

For tr (Γ ) = tr(Λ) = N we have G1 = −logdet(Λ), where G1 is the mean information in x for discriminating between
f1(x) and f2(x), see [15], and G2 = logdet(Λ) +

1
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. Therefore
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, (2)

from which it can be seen that G is small (not discriminating) if the eigenvalues λj are close to 1, but becomes large
(discriminating) for ‘‘small’’ eigenvalues.

We can also use the entropy measure. Let xt again be an N-dimensional vector of observed data at time t , t = 1, . . . , T .
The data is demeaned andnormalized, andnormally distributedwithmean zero and variance E(xtx′

t) = Γ , i.e. xt ∼ N (0, Γ ),
where diag(Γ ) = (1, 1, . . . , 1) and tr(Γ ) = N . Here we make the additional assumption that all eigenvalues are positive.
The entropy as measure of disorder for a stationary, normally distributed vector is given by

2Hx = −2Ex [log f (x)] = cN + logdet(Γ ),

where c ≡ log(2π) + 1 ≈ 2.84, with 2Hx,max = cN in the case of Γ = IN ; see e.g. Goodwin and Payne (1977) [10]. The
information or negentropy is defined as

2Infx ≡ 2(Hx,max − Hx) = −logdet(Γ ) ≥ 0, (3)

which is zero in the case of Γ = IN . This measure coincides with Kullback–Leibler information G1. We define the relative
information as

InfRN =
2Hmax − 2Hx(N)

2Hmax
=

2InfN
2Hmax

=
2InfN
cN

. (4)

If Hx(N) is equal to Hmax then InfRN = 0; if Hx(N) = 0 then InfRN = 1. The relative information equals the weighted mean
information per variable in the data vector xt , where the weight is 1/c.

2 Jacobs and Otter [14] apply similar information concepts to derive a formal test for the number of common factors and the lag order in a dynamic factor
model.
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