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a b s t r a c t

In Cator and Lopuhaä (arXiv:math.ST/0907.0079) [3], an asymptotic expansion for the
minimum covariance determinant (MCD) estimators is established in a very general
framework. This expansion requires the existence and non-singularity of the derivative in
a first-order Taylor expansion. In this paper, we prove the existence of this derivative for
general multivariate distributions that have a density and provide an explicit expression,
which can be used in practice to estimate limiting variances. Moreover, under suitable
symmetry conditions on the density, we show that this derivative is non-singular.
These symmetry conditions include the elliptically contouredmultivariate location-scatter
model, in which case we show that the MCD estimators of multivariate location and
covariance are asymptotically equivalent to a sum of independent identically distributed
vector and matrix valued random elements, respectively. This provides a proof of
asymptotic normality and a precise description of the limiting covariance structure for the
MCD estimators.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

The minimum covariance determinant (MCD) estimator [14] is one of the most popular robust methods to estimate
multivariate location and scatter parameters. These estimators, in particular the covariance estimator, also serve as robust
plug-ins in other multivariate statistical techniques, such as principal component analysis [5,16], multivariate linear
regression [1,15], discriminant analysis [7], factor analysis [13], canonical correlations [17,18] and errors-in-variables
models [6], among others (see also [8] for a more extensive overview). For this reason, the distributional and the robustness
properties of the MCD estimators are essential for conducting inference and performing robust estimation in several
statistical models.
The MCD estimators have the same high breakdown point as the minimum volume ellipsoid estimators (e.g., see [1,11]).

The asymptotic properties were first studied by Butler, Davies and Jhun [2] in the framework of unimodal elliptically
contoured densities; they showed that the MCD location estimator converges at

√
n-rate towards a normal distribution

with mean equal to the MCD location functional. In the same framework, Croux and Haesbroeck [4] give the expression for
the influence function of the MCD covariance functional and use this to compute limiting variances of the MCD covariance
estimator. The asymptotic theory was extended and generalized by Cator and Lopuhaä [3], who studied theMCD estimators
and the corresponding functional in a very general framework. They establish an asymptotic expansion of the type

θ̂n − θ0 = −Λ
′(θ0)

−1 1
n

n∑
i=1

(Ψ (Xi, θ0)− EΨ (Xi, θ0))+ oP(n−1/2), (1.1)
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where θ̂n and θ0 denote vectors consisting of the MCD estimators and the MCD functional at the underlying distribution,
respectively, and Ψ (·, θ0) is a function that we will specify later on. In principle, from this expansion a central limit
theorem for theMCDestimator can be derived. However, the expansion requires the existence and non-singularity ofΛ′(θ0).
Moreover, amore explicit expression of its inverse is desirable from a practical point of view, since it determines the limiting
variances.
In this paper we show that Λ′(θ0) exists as long as the underlying distribution P has a density f . Moreover, we provide

an explicit expression for Λ′(θ0) in Theorem 3.1. The expression offers the possibility to estimate the limiting variances of
the MCD estimators in any model where P has a density. This extends the applicability of the MCD estimator far beyond
elliptically contoured models. We will also provide sufficient symmetry conditions on f forΛ′(θ0) to be non-singular. This
includes the special case of elliptically contoured densities

f (x) = det(Σ)−1/2h((x− µ)Σ−1(x− µ)),
for which we show that the MCD location and the MCD covariance estimator are asymptotically equivalent to a sum
of independent vector and matrix valued random elements, respectively. This exact expansion shows that at elliptically
contoured densities the MCD location and MCD covariance estimator are asymptotically independent and yields an explicit
central limit theorem for both MCD estimators separately, in such a way that the limiting covariances between elements of
the location and covariance estimators can be obtained directly from the covariances between elements of the summands.
Furthermore, the expansion for the MCD estimators is needed to obtain the limiting distribution of robustly reweighted
least squares estimators for (µ,Σ), if one uses the MCD estimators to assign the weights (see [12]).
The paper is organized as follows. In Section 2, we define the MCD estimators and MCD functionals and discuss some

results from [3] that are relevant for our setup. In Section 3, we establish the expression for Λ′(θ0) in terms of a linear
mapping and show that this mapping is non-singular under suitable symmetry conditions. The special case of elliptically
contoured densities is considered in Section 4, where we obtain an explicit expression of Λ′(θ0)−1. From this we derive
an asymptotic expansion for the estimators, prove asymptotic normality, and derive the influence function of the MCD
functionals. As special cases we recover results from [2,4] under weaker conditions.
All proofs have been postponed to an Appendix at the end of the paper.

2. Definition and preliminaries

For a sample X1, X2, . . . , Xn from a distribution P onRk, theMCD estimator is defined as follows. Fix a fraction 0 < γ ≤ 1
and consider subsamples S ⊂ {X1, . . . , Xn} that contain hn ≥ dnγ e points. Define a corresponding trimmed sample mean
and sample covariance matrix by

T̂n(S) =
1
hn

∑
Xi∈S

Xi,

Ĉn(S) =
1
hn

∑
Xi∈S

(Xi − T̂n(S))(Xi − T̂n(S))′.
(2.1)

Note that each subsample S determines an ellipsoid E (̂Tn(S), Ĉn(S), r̂n(S)), where, for each µ ∈ Rk, Σ symmetric positive
definite, and ρ > 0,

E(µ,Σ, ρ) =
{
x ∈ Rk : (x− µ)′Σ−1(x− µ) ≤ ρ2

}
, (2.2)

and

r̂n(S) = inf
{
s > 0 : Pn

(
E (̂Tn(S), Ĉn(S), s)

)
≥ γ

}
, (2.3)

where Pn denotes the empirical measure corresponding to the sample. Let Sn be a subsample that minimizes det(̂Cn(S))
over all subsamples of size hn ≥ dnγ e; then the pair (̂Tn(Sn), Ĉn(Sn)) is anMCD estimator. Note that aminimizing subsample
always exists, but it need not be unique. In [3], it is shown that aminimizing subsample Sn always has exactly dnγ epoints and
is contained in the ellipsoid E (̂Tn(Sn), Ĉn(Sn), r̂n(Sn)), which separates Sn from all other points in the sample. Note that in [2]
(among others) one minimizes over subsamples of size bnγ c. This is somewhat unnatural, since it may lead to subsamples
S for which Pn(S) < γ . Moreover, it may lead to situations where the trimmed subsample does not contain the majority of
the points; for example, if γ = 1/2 and n is odd, then bnγ c = (n− 1)/2. By considering subsamples S of size hn ≥ dnγ e in
definition (2.1), we always have Pn(S) ≥ γ , and for any 1/2 ≤ γ ≤ 1, the subsample contains the majority of points.
We define the MCD functionals in a similar fashion. Define a trimmed mean and covariance as follows:

TP(φ) =
1∫
φ dP

∫
xφ(x)P(dx),

CP(φ) =
1∫
φ dP

∫
(x− TP(φ))(x− TP(φ))′φ(x)P(dx)

(2.4)

and define
rP(φ) = inf {s > 0 : P (E(TP(φ), CP(φ), s)) ≥ γ }
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