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a b s t r a c t

In this paper, a new measure of dependence is proposed. Our approach is based on trans-
forming univariate data to the space where the marginal distributions are normally dis-
tributed and then, using the inverse transformation to obtain the distribution function in
the original space. The pseudo-maximum likelihood method and the two-stage maximum
likelihood approach are used to estimate the unknown parameters. It is shown that the
estimated parameters are asymptotical normally distributed in both cases. Inference pro-
cedures for testing the independence are also studied.
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1. Introduction

Modeling and estimation of the multivariate distribution is an important issue which has a large number of possible
applications in different fields of science. The estimation and the inference for dependence in multivariate data is a related
problem of equal importance. Although both issues are most crucial whenmultivariate data are analyzed and a lot of multi-
variate models are suggested in the literature, the problem is still unsolved and attracts many researchers and practitioners.
The models for multivariate data can be divided into two large groups. In the first one, the conditional moments of the

distribution, usually the first two ones, aremodeled. Since the seminal paper of Engle [1] who introduced the autoregressive
conditional heteroscedastic (ARCH) process to model the conditional variances of univariate data, the univariate and
multivariate generalizations of the ARCH process have become very popular in financial and econometrical literature. The
first multivariate ARCH process was derived by Bollerslev et al. [2]. Engle and Kroner [3] designed the BEKK version of the
multivariate ARCHprocess. Other approaches considered diagonal and orthogonal versions of themultivariate ARCHprocess
(see, e.g. [4–6]). In order to model conditional correlations the constant conditional correlation (CCC) and the dynamic
conditional correlation (DCC) processes were suggested by Bollerslev [7], Engle [8], and Tse and Tsui [9]. A detailed survey
of multivariate ARCH processes is given in [10]. Although the multivariate ARCHmodels play an important role in modeling
multivariate data, they do not answer the question how strong is the dependence. The problem is that they all model the
conditional covariance (or correlation) matrix which is the measure of dependence only in the case of the multivariate
normal distribution. The second drawback of the multivariate ARCH models is the joint distribution function which is not
specified in the closed form up until now.
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The other possibility of modeling multivariate data is to model directly the joint distribution function. The most wide-
spread approach is to assume that the data follow amultivariate normal distribution. Note that only in the case of the normal
distribution, the dependence structure is fully determined by the correlation matrix. We use this fact later on when a new
procedure of modeling the joint distribution will be presented. Despite this nice property, the application of the normal
distribution to model multivariate data is heavily criticized. The main points are the heavy tails and asymmetry usually ob-
served in the empirical distributions of data. Generalizations of the multivariate normal distribution have been done in two
directions, namely elliptically contoured distributions (see, e.g. [11,12]) and a skew normal distribution (see, e.g. [13–16]).
Although the elliptically contoured distributions provide a good fit for heavy tails, they are also symmetric. The main prob-
lem with modeling by the skew normal distribution is the estimation and inferences of the model parameters.
The copula based modeling of multivariate distribution has recently increased its popularity (see, e.g. [17–22]). The

method is based on Sklar’s [23] theorem that relates an arbitrary distribution function F onRk to a copula function C via the
univariate marginal distributions Fi, i = 1, . . . , k of F . The relationship between the distribution function and the copula
function is given by

F(x1, . . . , xk) = C(F1(x1), . . . , Fk(xk)).

Moreover, if themarginal distributions are continuous then the copula function is uniquely specified. The form of the unique
copula is not known. From one side it provides a flexibility of copula modeling that results in different forms of the copula
functions. The most popular of them are elliptical and Archimedean families. From the other side, we can be sure that the
selected form of the copula function is the true one.
In this paper, we suggest a newmeasure of dependence and study its distributional properties. Our approach is based on

a transformation of the data to a space where the dependence structure can be simply modeled and the joint distribution
function can be constructed. Then, using the inverse transformation, the distribution function is obtained in the original
space of the data. We use the transformation

Ui = Φ−1(Fi(xi)), i = 1, . . . , k, (1)

that transforms the univariate data to the space where they are normally distributed. Note that the transformation (1) is not
new and has previously been considered in the statistical literature. For example, Efron [24] used this transformation for
constructing an improved estimator of the bootstrap confidence intervals. The transformation (1) allows us to determine the
structure of the joint distribution function in terms of the univariate marginal distributions and a k × k correlation matrix
that fully describes the dependence structure of multivariate data. This can be done if the univariate marginal distributions
are continuous and the joint distribution can be expressed as a Gaussian copula.
Our main results are given in the next section, where a new measure of dependence is presented and its distributional

properties are studied. In Section 2.2, we discuss how it can be estimated. The pseudo-maximum likelihoodmethod and the
two-stage maximum likelihood approach are used. It is shown, that the estimated parameters are asymptotically normally
distributed. In Sections 2.3 and 2.4, the inference procedures for testing the independence for multivariate data are given.
An application of the suggested approach to the canonical correlation analysis is presented in Section 3.

2. Main results

2.1. Modeling the multivariate dependence

Let x1, . . . , xn be independent realizations of the k-dimensional randomvectorX = (X1, X2, . . . , Xk)′with the continuous
distribution function F(.) and the marginal distributions Xi ∼ Fi(.). There are different ways to measure the dependence
between the elements of X. The most widely used is the Pearson correlation coefficient, which is the measure of the linear
dependence, and it is defined as

ρXi,Xj =

n∑
l=1
(xil − x̄i)(xjl − x̄j)√

n∑
l=1
(xil − x̄i)2

√
n∑
l=1
(xjl − x̄j)2

, (2)

where xl = (x1l, x2l, . . . , xkl)′ and x̄i = 1
n

∑n
l=1 xil. When X ∼ Nk(µ,6), then ρXi,Xj is also a dependence measure between

the elements of the vector X. It holds that Xi and Xj are independent iff ρXi,Xj = 0.
The Spearman rank-order correlation coefficient is a non-parametric measure of the dependence defined using the ranks

of the data values. It is given by

θXi,Xj =

n∑
l=1
(rank(xil)− rank(xi))(rank(xjl)− rank(xj))√

n∑
l=1
(rank(xil)− rank(xi))2

√
n∑
l=1
(rank(xjl)− rank(xj))2

, (3)
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