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a b s t r a c t

For the well-known Fay–Herriot small area model, standard variance component
estimation methods frequently produce zero estimates of the strictly positive model
variance. As a consequence, an empirical best linear unbiased predictor of a small area
mean, commonly used in small area estimation, could reduce to a simple regression
estimator, which typically has an overshrinking problem. We propose an adjusted
maximum likelihood estimator of the model variance that maximizes an adjusted
likelihood defined as a product of the model variance and a standard likelihood (e.g.,
a profile or residual likelihood) function. The adjustment factor was suggested earlier
by Carl Morris in the context of approximating a hierarchical Bayes solution where the
hyperparameters, including themodel variance, are assumed to follow a prior distribution.
Interestingly, the proposed adjustment does not affect the mean squared error property
of the model variance estimator or the corresponding empirical best linear unbiased
predictors of the small area means in a higher order asymptotic sense. However, as
demonstrated in our simulation study, the proposed adjustment has a considerable
advantage in small sample inference, especially in estimating the shrinkage parameters
and in constructing the parametric bootstrap prediction intervals of the small area means,
which require the use of a strictly positive consistent model variance estimate.

Published by Elsevier Inc.

1. Introduction

The Fay–Herriot model [1], widely used in small area estimation, consists of two levels. In Level 1, we have the sampling
model,

Yi|θi ∼ N(θi,Di), i = 1, . . . ,m,

independently for each i. In Level 2, we have the linking model,

θi ∼ N(x′iβ, A), i = 1, . . . ,m,

also independently for each i.
Level 1 accounts for the sampling variability of the regular survey estimates Yi of true small area means θi. Level 2 links

θi to a vector of p known auxiliary variables xi = (xi1, . . . , xip)′, often obtained from administrative and census records. The
sampling variances Di are assumed to be known.
The Fay–Herriot model has been widely used in small area estimation and related problems for a variety of reasons,

including its simplicity, its ability to protect confidentiality of microdata and its ability to produce design-consistent
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estimators. Some earlier applications of the Fay–Herriot model include the estimation of: (i) false alarm probabilities in
New York city [2]; (ii) the batting averages of major league baseball players [3]; and (iii) prevalence of toxoplasmosis in
El Salvador [3]. More recently, the Fay–Herriot model was used: to estimate poverty rates for the US states, counties, and
school districts [4] and to estimate proportions at the lowest level of literacy for states and counties [5]. For a comprehensive
review of the theory and applications of the above model, see [6, Chapter 7].
The best predictor (BP) of θi and the associated mean squared prediction error (MSPE) are given by

θ̂BPi = Yi − Bi(Yi − x
′

iβ),

and

MSPE[θ̂BPi ] = E[θ̂
BP
i − θi]

2
= g1i(Bi),

where 0 < Bi = Di/(A+Di) < 1, i = 1, . . . ,m; E is the expectationwith respect to the joint distribution of Y and θ induced
by the Fay–Herriot model and g1i(Bi) = Di(1− Bi).
The best predictor shrinks the direct estimator Yi towards the regression surface x′iβ , the amount of shrinkage being

determined by the shrinkage factor Bi. The closer the value of Bi to 1, the greater the strength of the Level 2 model and hence
the greater the efficiency of the best predictor, as reflected by a smaller value of the mean squared prediction error of the
best predictor. When A = 0, that is when the Level 2 model is perfect, Bi = 1 for all i = 1, . . . ,m. In this case, the best
predictor is identical to the regression estimator. This situation, however, is unrealistic, since Level 2 modeling, just like any
modeling, cannot be perfect, that is A should be always greater than 0. Thus, throughout the paper we assume A > 0.
In practice, both β and the Bi’s are unknown and need to be estimated from the data. The regression parameter β is

estimated by the weighted least square estimator β̃w = (
∑m
j=1 xjx

′

jBj/Dj)
−1∑m

j=1 xjYjBj/Dj. When this estimator of β is
plugged into the best predictor, the best linear unbiased predictor (BLUP) of θi is obtained and is denoted by θ̂BLUPi . It is now
clear that the shrinkage factors Bi are important parameters to estimate. They are needed for a good evaluation of the Level
2 model and to carry out the necessary prediction analyses. When estimates of Bi are plugged into the best linear unbiased
predictor formula, one obtains an empirical best linear unbiased predictor (EBLUP) of θi, denoted by θ̂EBLUPi .
From Jensen’s inequality and the convexity of Bi as a function of A, it follows that B̂i overestimates Bi even when an

exactly unbiased estimator of A is used, and the extent of the overestimation may be severe for small m. In addition,
standard methods of estimation of A considered in the literature, including using the Prasad–Rao simple method-of-
moments estimator, ÂPR [7], the Fay–Herriot method-of-moments estimator, ÂFH [1,8], the maximum likelihood estimator,
ÂML, and the residual maximum likelihood estimator, ÂRE, are all subject to zero estimates resulting in undesirable estimates
B̂i = 1 for all i = 1, . . . ,m. In real life data analyses, this problem is quite frequent (see, e.g., [9] and [10]).
In Section 2, we introduce an adjustment to the maximum (profile or residual) likelihood estimator of A in order to

produce a strictly positive estimate of A, for small m. The proposed adjustment increases the order of bias of the residual
maximum likelihood estimator, but not the mean squared error, up to the order O(m−1). However, the mean squared error
or the bias property of the maximum profile likelihood estimator of A remains unaffected, up to order O(m−1). In terms of
the estimation of the shrinkage factors Bi, the adjustment does not increase the order of the bias or the mean squared error,
irrespective of whether a profile or residual likelihood function is used for the adjustment.While there is no clear advantage
of using the proposed adjustedmaximum likelihoodmethods for largem, they have a clear edge over the standardmethods
for smallm in terms of preventing the full shrinkage.
Morris [11] proposed a method, known as the adjusted density maximization (ADM) method, as an intermediary step

in approximating a hierarchical Bayes solution. Recently, Morris and Tang [12] (also see [13]) pursued the ADMmethod for
the Fay–Herriot model. The ADM approximations to the posterior means of A and Bi, under an (improper) uniform prior on
β and superharmonic prior [14] on A, are identical to the corresponding adjusted maximum residual likelihood estimators
given in this paper. However, unlike Morris and Tang [12], we consider a classical prediction approach, which does not
assume a prior distribution for β and A, in measuring the uncertainty of the proposed EBLUP and the associated prediction
interval.Moreover, for the Fay–Herriotmodel,Morris and Tang [12] did not suggest the adjustedmaximumprofile likelihood
estimator, which appears to perform better than the adjusted maximum residual likelihood estimator in our simulation
study.
The mean squared prediction errors of empirical best linear unbiased predictors of θi that use the proposed adjusted

maximum likelihood estimators are presented in Section 3. In this section, we also provide the second-order (or nearly)
unbiased estimators of the mean squared prediction errors of empirical best linear unbiased predictors when the proposed
adjusted maximum likelihood estimators are used. The use of the proposed adjusted maximum likelihood estimators of A
does not affect the mean squared prediction errors of empirical best linear unbiased predictors, up to the order O(m−1).
However, the expressions for the proposed nearly unbiased mean squared prediction error estimators are different for
different methods of estimating A.
Cox [15] and Morris [16] proposed normality based empirical Bayes confidence intervals of θi. The coverage errors of

such intervals are typically of order O(m−1). Chatterjee, Lahiri and Li [17] proposed an improved interval estimation using
the parametric bootstrap method. The method requires repeated generation of a pivotal quantity from several bootstrap
samples. A strictly positive estimate of A is absolutely needed for this method since the pivotal quantity is undefined when
the A estimate is zero. A crude fix is to take a small positive number whenever the A estimate turns out to be zero. But, in
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