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a b s t r a c t

This paper derives the corrected conditional Akaike information criteria for generalized
linear mixed models by analytic approximation and parametric bootstrap. The sampling
variation of both fixed effects and variance component parameter estimators are accom-
modated in the bias correction term. Simulation shows that the proposed corrected criteria
provide good approximation to the true conditional Akaike information and demonstrates
promising model selection results. The use of the criteria is demonstrated in the analysis
of the chronic asthmatic patients’ data.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

The generalized linear mixed model (glmm) is a powerful tool for the analysis of non-normal and non-independent
data. When the research interest is on cluster effects in addition to population-level parameters, the traditional Akaike
information criterion is not appropriate because the prediction of random effects is involved.

Motivated by this, Vaida and Blanchard [24] defined conditional Akaike information (cai), and the corresponding
conditional Akaike information criterion (caic) for linearmixedmodels (lmms)was derivedbased on the best linear unbiased
predictor (blup), where the variance component parameters of random effects were assumed to be known. Within the
framework of cai, Srivastava and Kubokawa [23] considered the problem of selecting the variables of the fixed effects
in lmms, and also assumed the known variance component parameters. When the variance component parameters are
unknown, Vaida and Blanchard [24] and Srivastava and Kubokawa [23] suggested using the plug-in estimator for the
unknown variance component parameters, the resulting criterionwas termed as conventional caic by Greven and Kneib [9].
Moreover, Liang et al. [18] proposed a corrected version that accounts for the sampling variation of the variance component
parameter estimators and showed the advantage of their corrected version over the conventional caic by simulation.
In addition, Kubokawa [15] extended Liang’s corrected caic to the situation when all the parameters are unknown. In
comparisonwith the corrected caic, Greven andKneib [9] proved that in lmm settings, ignoring the uncertainty in estimation
of the variance component parameters induced a specific bias on the conventional caic and advocated the use of the
corrected caic in practice.
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Recently, Donohue et al. [7] extended caic to glmms not only because of their focus on clusters but also due to the fact that
the marginal distribution of response usually has no explicit form. In Donohue et al. [7], the estimated variance component
parameters were directly plugged into the expression criterion and the resulting caic can be viewed as an extension of
conventional caic of lmm. In this paper, accommodating the sampling variation of variance component parameter estimators
in the bias correction term, we shall develop two corrected forms of caic under the glmm setting of Donohue et al. [7] by
analytic approximation and bootstrap, respectively.We prove that under some regularity conditions, the difference between
the conventional and corrected versions of caic is asymptotically ignorable. However, when the variance of randomeffects is
very small, such difference in the finite sample situation becomes apparent. Simulation studies also show that our proposed
corrected caics perform well in estimation of cai and in model selection.

The rest of the paper is arranged as follows. Section 2 describes the model framework and notations. Section 3 derives
the corrected caics for glmms where the corresponding bias correction term is obtained by analytic approximation and
parametric bootstrap. The difference between corrected caic (analytic approximation) and the conventional caic is explored.
Section 4 presents a simulation study on the behavior of the proposed criteria and demonstrates the method with an
application to a set of chronic asthmatic patients’ data. Section 5 concludes. Regularity conditions and technical proofs are
presented in the Appendix.

2. Model framework and notations

Consider the data consisting of outcomes fromm clusters, with ni observations for the ith cluster (i = 1, . . . ,m). In the ith
cluster, conditional on the cluster-specific d× 1 vector of random effects bi, the outcomes yij are independent and assumed
to follow a glmm with mean

E(yij|β, bi) = g−1(ηij) = g−1(βTxij + bTi zij), (1)

where β is the p × 1 fixed effects vector, xij and zij are the vectors in the design matrix corresponding to fixed and random
effects, respectively, and g(·) is the link function. Let N = n1 + · · · + nm, yi· = (yi1, . . . , yini)

T, y = stack(y1·, . . . , ym·)
(the stack function stacks matrices on the top of each other), b = stack(b1, . . . , bm), X = stack(X1, . . . , Xm), Z = diag(Z1,
. . . , Zm), and U = (X, Z). η = (η11, . . . , η1n1 , . . . , ηm1, . . . , ηmnm)T.

Assume that b1, . . . , bm are independently distributed with Ebi = 0d×1 and bi ∼ κ(bi|ϕ), where ϕ is the v-dimensional
variance component parameter vector. Denote ξ = stack(β, ϕ) as the vector of unknown parameters and li(yi· | β, bi) as
the log-likelihood function of the ith cluster conditional on random effects vector bi, then the joint log-likelihood is

ljoint(y, b | ξ) =

m
i=1

ljoint,i(yi·, bi | ξ) =

m
i=1

{li(yi· | β, bi) + log κ(bi | ϕ)} . (2)

Let q = d × m, θm = stack(β, b1, . . . , bm), l(y | θm) =
m

i=1 li(yi· | β, bi), and lκ(b | ϕ) =
m

i=1 log κ(bi | ϕ). When the
model is correctly specified, we have

Ey|b {∂ l(y | θm)/∂θm} = 0(p+q)×1, Eb{∂ log κ(bi | ϕ)/∂bi} = 0d×1. (3)

Denote b̃i(ξ) as the solution of ∂ ljoint,i(yi·, bi | ξ)/∂bi = 0d×1 and β̃(ϕ) as the solution of ∂ ljoint (y, b | ξ) /∂β|bi=b̃i(ξ) =

0p×1. Let ϕ̂ be a consistent estimator of ϕ, ξ̂ = stack(β̂, ϕ̂), β̂ = β̃(ϕ̂), and b̂i = b̃i(ξ̂ ). Then the estimator/predictor vector

θ̂nm = stack

β̂, b̂1, . . . , b̂m


satisfies

∂ ljoint(y, b | ξ)

∂θm


θm=θ̂nm,ϕ=ϕ̂

= 0(p+q)×1. (4)

Lee and Nelder [16] termed θ̂nm as the maximum hierarchical likelihood estimator (mhle), and considered it as a
generalization of the blup type estimator in non-normal settings. Moreover, it can also be verified that θ̂nm is the maximum
posterior estimator [12] of θm. This estimator was widely discussed in the literature, such as Breslow and Clayton [5],
McGilchrist [20] and Yau and Kuk [26], and its asymptotic property was studied in Lee and Nelder [16], Jiang et al. [12]
and Nie [21].

Let ∇̂
′

θ (y | θm) = −∂ l(y | θm)/∂θm, ∇̂ ′′

θθ (y | θm) = −∂2l(y | θ)/∂θm∂θT
m, and ∇

′′

θθ (ξ) = Ey,b

∇̂

′′

θθ (y | θm)

. Denote

∇̂
′′

ββ(y | θm), ∇̂ ′′

βbi
(y | θm) and ∇̂

′′

bibi
(y | θm) as the corresponding matrix partitions with respect to fixed/random effects

vectors in ∇̂
′′

θθ (y | θm). Similarly, ∇ ′′

ββ(ξ), ∇ ′′

βbi
(ξ) and ∇

′′

bibi
(ξ) are sub-matrices of ∇ ′′

θθ (ξ). Let ∇̂ ′′

βb(y | θm) =


∇̂

′′

βb1
(y | θm),

. . . , ∇̂ ′′

βbm(y | θm)

and ∇̂

′′

bb(y | θm) = diag

∇̂

′′

b1b1
(y | θm), . . . , ∇̂ ′′

bmbm(y | θm)

.

Moreover, let ∆̂′

θ (y | θm, ϕ) = −∂ ljoint(y, b | ξ)/∂θm, ∆̂′′

θθ (y | θm, ϕ) = −∂2ljoint(y, b | ξ)/∂θm∂θT
m, and ∆̂′′

ββ(y | θm, ϕ),
∆̂′′

βbi
(y | θm, ϕ) and ∆̂′′

bibi
(y | θm, ϕ) be the corresponding matrix blocks with respect to the fixed/random effects vectors of
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