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a b s t r a c t

Robustness and efficiency of the residual scale estimators in the regressionmodel is impor-
tant for robust inference. We introduce the class of robust generalized M-scale estimators
for the regression model, derive their influence function and gross-error sensitivity, and
study their maxbias behavior. In particular, we find overall minimax bias estimates for the
general class and also for well-known subclasses. We pose and solve a Hampel’s-like op-
timality problem: we find generalized M-scale estimators with maximal efficiency subject
to a lower bound on the global and local robustness of the estimators.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

In linear regression, the classical estimators for the regression coefficients and error scale are the well-known least
squares estimators. These estimators are optimal under normal errors but extremely sensitive to outliers. This is partic-
ularly the case for the residual scale estimator.

Much attention has been paid in the statistical literature to robust and efficient estimation of the regression parameters.
In this context, robust residual scale estimators are sometimes proposed as well, but the focus remains on the regression
parameters. See e.g. [13,8,2]. For the location-scale model, some attention has been given to the estimation of the scale
parameter. See for example [12,14,15,18,17,6].

Robust residual scale estimates play an important role in robust inference for the regression model such as the construc-
tion of confidence/prediction intervals, testing of hypotheses and model selection. The properties of such robust inference
procedures heavily depend on the parameter estimators involved (see e.g. [9,22]). If the scale is involved in the inference, it is
thus desirable to use a highly robust andhighly efficient scale estimator to obtain a reliable and effective inference procedure.

Therefore, we study the statistical properties – robustness and efficiency – of a large class of robust residual scale estima-
tors, which we call generalized M-scales. This class includes M-scales [10], S-scales [20], and τ -scales [24] as particular cases.
We show that the influence function (IF) and breakdown point (BDP) properties do not suffice to characterize the robustness
behavior of generalized M-scales because many generalized M-scales can be constructed with the same IF and BDP that still
exhibit quite different robustness performance. Therefore, we study the maxbias of generalized M-scales which is a more
overall measure of the robustness of an estimator. We investigate the maxbias behavior of generalized M-scales and deter-
mine which regression estimators must be used to maximize the robustness of the resulting scale estimator. Moreover, we
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find scale estimators that maximize efficiency under the central model subject to a bound on the gross-error sensitivity and
breakdown point.

We now introduce some definitions and notation used throughout this paper. Consider n observations (yi, zti )
t
∈ Rp and

the linear regression model

yi = xtiβ0 + σ0ui, 1, . . . , n, (1)
where xi = (1, zti )

t . Under this central model, the errors ui are assumed to be independent and identically distributed
with a common distribution F0, which is symmetric around zero and has scale one. Moreover, the errors are assumed
to be independent of the predictors zi. We consider regression models with random predictors which is the standard
when studying maxbias properties of regression estimators and allows us to obtain overall results that do not depend
on a particular design. The distribution of the predictors under the central model is denoted by G0 and the common joint
distribution of (yi, zti )

t is denoted by H0. To allow for a fraction 0 ≤ ϵ ≤
1
2 of outliers we assume that the actual underlying

distribution Hϵ of (yi, zti )
t
; i = 1, . . . , n belongs to the contamination neighborhood

Hϵ = {Hϵ : Hϵ = (1 − ϵ)H0 + ϵH∗
},

where H∗ is an arbitrary and unspecified distribution. Robust and efficient estimators for β0 or σ0 are expected to perform
relatively well for any Hϵ ∈ Hϵ with 0 ≤ ϵ < ϵ∗

n , for some ϵ∗
n which would preferably be close or equal to 1

2 . Efficiency of
the estimators is measured by their performance at the central model H = H0 (i.e. ϵ = 0).

For any v ∈ Rp let ri(v) = yi − xti v denote the corresponding residuals. The most common estimators of the error scale
parameter σ0 are based on the residuals ri(β̂n) for some regression estimator β̂n. We consider the following general class of
residual scale estimators that we call generalized M-scales:

σ̂n(ŝn, β̂n) = ŝn

 1
b n

n
i=1

ρ


ri(β̂n)

ŝn


. (2)

Here ŝn is an arbitrary initial scale estimator, perhaps based on residuals ri(β̃n) corresponding to a given regression fit β̃n. The
constant b is set equal to EF0 {ρ(u)} to obtain a consistent scale estimator at the central model. Often the error distribution
F0 is assumed to be the standard Gaussian distribution to obtain a consistent scale estimator at this model, provided that
the initial scale estimator ŝn is also consistent.

The generalized M-scale estimators considered in this paper are based on loss functions ρ : IR → IR that satisfy the
following conditions:
(A1) ρ is symmetric, bounded and nondecreasing on [0,∞]with ρ(0) = 0. Moreover, ρ is differentiable at all x ∈ R, except

perhaps at a finite number of points.
(A2) The error distribution F0(x) has a density f0(x), which is symmetric, continuous, and strictly decreasing for u ≥ 0.

Some results will require an additional assumption:
(A3) g (s) = EF0


s2ρ( us )


is nondecreasing for all s ≥ 0.

Note that (A3) holds if, for instance, 2ρ(u) − ρ ′(u)u ≥ 0, which is true for several well known ρ functions including
Tukey’s biweight loss function. The symmetry of the error distribution in Assumption (A2) is natural and commonly made
in robust regression. Moreover, it is needed to prove our results. Assumption (A1) implies that we can assume without loss
of generality that limt→∞ ρ(t) = 1 when convenient. The derivative of the loss function ρ(x), which exists according to
Assumption (A1), is denoted by ψ(x).

One would expect that a robust choice for the initial estimators ŝn and β̂n combined with an efficient choice for the loss
function ρ would lead to a highly robust and efficient estimator σ̂n(ŝn, β̂n). In fact, wewill show that our class of generalized
M-scales includes estimators that can achieve high efficiency at H0 without compromising their robustness.

To derive the asymptotic properties of the scale estimators, we introduce the generalized M-scale functional
corresponding to the generalized M-scale estimator in (2). For any distribution H on Rp the generalized M-scale functional
is defined as

σ̂ (H; ŝ, β̂) = ŝ(H)

1
b
EHρ


y − xt β̂(H)

ŝ(H)


, (3)

where ŝ = ŝ(H) and β̂ = β̂(H) are scale and regression functionals corresponding to the estimators ŝn and β̂n, respectively.
We now give some examples of special subclasses of generalized M-scale estimators defined by (2)–(3).

Example 1 (M-scales). Given a preliminary regression estimator β̃n, the corresponding M-scale estimator σ̂M
n (β̃n) is implic-

itly defined as a solution, in s, to the equation

1
n

n
i=1

ρ


ri(β̃n)

s


= b, (4)
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