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a b s t r a c t

The principle of self-consistency has been employed to estimate regression quantile
with randomly censored response. The asymptotic studies for this type of approach was
established only recently, partly due to the complex forms of the current self-consistent
estimators of censored regression quantiles. Of interest, how the self-consistent estimation
of censored regression quantiles is connected to the alternativemartingale-based approach
still remains uncovered. In this paper, we propose a new formulation of self-consistent
censored regression quantiles based on stochastic integral equations. The proposed
representation of censored regression quantiles entails a clearly defined estimation
procedure. More importantly, it greatly simplifies the theoretical investigations. We
establish the large sample equivalence between the proposed self-consistent estimators
and the existing estimator derived from martingale-based estimating equations. The
connection between the new self-consistent estimation approach and the available self-
consistent algorithms is also elaborated.

© 2012 Published by Elsevier Inc.

1. Introduction

Quantile regression [12] has arisen into a useful regression technique for survival data (i.e. time-to-event data). Compared
to traditional survival regression methods, including the Cox proportional hazards model and the accelerated failure time
(AFT) model, quantile regression can accommodate a more general relationship between an event time of interest and
covariates while providing straightforward interpretations.

Let T and C denote time to event and time to censoring, and let Z denote a p×1 covariate vector with the first component
set as 1. Without loss of generality, the censored regression quantile model investigated in this paper takes the form

QT (τ |Z) = exp{ZTβ0(τ )}, τ ∈ (0, 1), (1)

where QT (τ |Z) ≡ inf{t : Pr(T ≤ t|Z) ≥ τ } denotes the conditional quantile function of T given Z (with the same
definition applied to any other random variable), andβ0(τ ) is a p×1 vector of unknown regression coefficients representing
covariate effects on the τ -th quantile of log T . Model (1) adopts the standard random censoring mechanism. That is, T and
C are assumed to be independent conditional on Z . Under this independent censoring assumption, the distribution of C is
allowed to depend on Z .

It is worth noting that much previous work on quantile regression with censored data cannot address the regression
quantile problem defined above. For example, early efforts by Powell [20,21] require that all censoring times be known or
fixed and so do the subsequent work by Fitzenberger [5], Buchinsky and Hahn [3], among others. Other methods, such as
those by Ying et al. [25] and Honore et al. [7], demand unconditional independence between T and C , which is a stronger
assumption than the standard random censorship, and thus cannot be applied here.

Portnoy [18] made the first attempt to tackle the censored regression quantile problem (1) by novelly employing the
principle of self-consistency [4]. The principle of self-consistency here, in short, refers to an estimation scenario from
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equaling the estimator to an expression that contains the estimator itself. The estimator proposed in [18] reduces to the
Kaplan–Meier estimator [9] in the one-sample case. The initial iterative algorithmwas polished by Neocleous et al. [16] to a
grid-based estimation procedure. We hereafter refer the estimator defined in [16] to as Portnoy’s self-consistent estimator,
denoted byβPSC (τ ). Asymptotic studies on the self-consistent estimation of regression quantile were established only until
recently by Portnoy and Lin [19], partly due to the complex representation of the existing estimators. Other subsequentwork
of [18] includes (but is not limited to) [15],which studied themonotonicity property associatedwithβPSC (τ ), and [24],which
relaxed the global linear assumption in model (1).

Peng and Huang [17] proposed an alternative approach to estimating β0(τ ) in model (1) by utilizing the martingale
structure of randomly censored data. A clearly defined grid-based algorithm was developed based on a set of monotone
estimating equations. These estimating equations have appealing stochastic integral representationswhich greatly facilitate
large-sample studies. Peng andHuang [17] derived the closed formof the limit process of their estimator, denoted byβPH(τ ).
It was also shown thatβPH(τ ) becomes a Nelson–Aalen type estimator [14,1] when there is no covariate. More recently,
Huang [8] derived a grid-free estimation procedure based on a new concept of quantile calculus. The resulting estimator has
the same distribution as Peng and Huang [17]’s estimator.

A brief introduction of the algorithms presented in [16,17] is provided in Section 2. Both of these approaches have been
implemented for R in the contributed package quantreg [11]. Comprehensive numerical studies conducted by Koenker [10]
demonstrated very similar empirical performance between βPSC (τ ) and βPH(τ ). Though the asymptotic equivalence
between these two estimators can be established in the one-sample case given the fact that the Kaplan–Meier estimator
and the Nelson–Aalen estimator are equivalent in the large sample sense, their connection remains unknown in general
regression settings.

In this paper, we develop a new framework to study the self-consistent estimation ofmodel (1)with T subject to standard
random censorship. With the principle of self-consistency generally perceived as an estimation strategy that defines an
estimator as some function of the observed data and the estimator itself, and then utilizes such a relationship to obtain
a consistent well-defined estimator, throughout this paper, the self-consistent estimation of model (1) refers to as the
estimation of β0(·) which involves a use of self-consistency principle. Compared to previous work, the proposed method
preserves the computational-ease feature, while providing a more direct approach to the asymptotic theory. Of note, the
current self-consistent estimators are defined under the assumption that no censoring would occur below ZTβ0(ϵl) for all Z ,
where ϵl is a prespecified constant in (0, 1). This assumption is not likely to incur serious concerns in real data analysis with
ϵl selected small enough. Nevertheless, it is practically desirable to eliminate this restriction. In Section 3, we formulate
censored regression quantiles based on stochastic integral equations derived from adopting self-consistency principle.
The new representation of self-consistent censored regression quantiles entails clearly defined estimation and inference
procedures, which avoid the artificial data constraint stated above. In Section 4, we show the asymptotic equivalence of the
proposed self-consistent estimators toβPH(τ ). Therefore, we establish the uniform consistency andweak convergence of the
newestimatorswith the closed-forms for the limit distributions derived. Furthermore,we elaborate the connection between
the proposed estimators and Portnoy’s self-consistent estimator. The results aid in understanding the close proximity
betweenβPH(τ ) andβPSC (τ ) observed in previous empirical studies. Monte-Carlo simulations reported in Section 5 confirm
our theoretical findings.

It is important to note that the proposed framework for self-consistent estimation of censored quantile regression can
be extended to survival settings with more complex censoring mechanisms. A few remarks are supplied in Section 6.

2. Two existing approaches for censored quantile regression

Define X̃ = T ∧ C and δ = I(T ≤ C), where ∧ is the minimum operator and I(·) is the indicator function. The observed
randomly censored data consist of n iid replicates of (X̃, δ, Z), denoted by {(X̃i, δi, Zi), i = 1, . . . , n}. We define X = log X̃
and accordingly Xi = log X̃i.

2.1. Portnoy’s self-consistent approach

Wehere outline the grid-based algorithmpresented in [16]. A grid of τ -values is defined as 0 < τ1 < τ2 < · · · < τM < 1.
Define m(β, i, k) = max{l : 1 ≤ l ≤ k − 1, ZT

i β(τl) < Xi ≤ ZT
i β(τl+1)} if the set {l : 1 ≤ l ≤ k − 1, ZT

i β(τl) < Xi ≤

ZT
i β(τl+1)} is not empty, andm(β, i, k) = k + 1 otherwise. By this definition,m(β, i, 0) = 1.

Step 1. ComputeβPSC (τ1)by fitting theuncensoredquantile regressionwithdata {Xi, δi, Zi}
n
i=1. It is assumed that all censored

Xi’s are above the hyperplane determined byβPSC (τ1). Set k = 1.
Step 2. GivenβPSC (τl) (l ≤ k), obtainβPSC (τk+1) by minimizing the following weighted check function:

δi=1

ρτ (Xi − ZT
i b)+


δi=0


ŵk+1, iρτ (Xi − ZT

i b)+ (1 − ŵk+1, i)ρτ (X∗
− ZT

i b)

, (2)

where ŵk+1,i = (τk+1−τm(βPSC ,i,k)
)/(1−τm(βPSC ,i,k)

) ifm(βPSC , i, k) < k+1 and 1 otherwise, ρτ (u) = u{τ−I(u < 0)},
and X∗ is an extremely large value.
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