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a b s t r a c t

This work presents a Bayesian semiparametric approach for dealing with regression
models where the covariate is measured with error. Given that (1) the error normality
assumption is very restrictive, and (2) assuming a specific elliptical distribution for errors
(Student-t for example), may be somewhat presumptuous; there is need for more flexible
methods, in terms of assuming only symmetry of errors (admitting unknown kurtosis).
In this sense, the main advantage of this extended Bayesian approach is the possibility of
considering generalizations of the elliptical family of models by using Dirichlet process
priors in dependent and independent situations. Conditional posterior distributions are
implemented, allowing the use of Markov Chain Monte Carlo (MCMC), to generate the
posterior distributions. An interesting result shown is that the Dirichlet process prior is not
updated in the case of the dependent elliptical model. Furthermore, an analysis of a real
data set is reported to illustrate the usefulness of our approach, in dealing with outliers.
Finally, semiparametric proposed models and parametric normal model are compared,
graphically with the posterior distribution density of the coefficients.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

The simple linear regression measurement error model (MEM) is defined by the equations

yi = β0 + β1xi + ei, (1)
zi = xi + ui, (2)

i = 1, . . . , n, indicating that the true value xi is unknown and that its estimate zi is available, generated by the random
mechanism (2), which is called additive MEM. Situations where x is measured with error abound in the literature. Fuller
[1] and Carroll et al. [2,3] report several situations where such problems occur. Bayesian parametric methodologies for the
MEM model are considered in Dellaportas and Stephens [4], Mallik and Gelfand [5], Richardson and Gilks [6] and Bolfarine
and Arellano-Valle [7], among others. A nonparametric approach to the dichotomous situation using a logistic model is
considered in Muller and Roeder [8]. One simple situation occurs when the interest is focused on studying the relationship
between the production of a certain cereal and the amount of nitrogen in the soil. This relation can only be measured by
laboratory analysis, and certainly involves measurement error. Berkson [9] models the true unobserved value as depending
on the observed value plus an error term (see [4]);

xi = zi + ui.
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In contrast, our work models the observed value zi as the sum of true value xi and the error term. Therefore, this article
investigates the classical measurement error model (and not the Berkson model), hereinafter called simply measurement
error model.
Typically, the normality assumption is considered for the error vector, namely,(

ei
ui

)
∼ N2

[(
0
0

)
,

(
φe 0
0 φu

)]
, i = 1, . . . , n. (3)

Here, the normality assumption for the error vector in (3) is replaced by the ellipticity assumption. As is well known,
the elliptical models let us consider two different cases. The first case, called the independent model, considers independent
observations, which are typically harder to deal with but generate robust models, contrasting with outlying observations.
The second case, the dependent model, presents robustness within the family that is being considered. A detailed discussion
on properties and differences between bothmodels is presented in Bolfarine and Arellano-Valle [7]. In the independent case
considered first, we have that

ei
iid
∼ El1(0, φ−1e , he), (4)

ui
iid
∼ El1(0, φ−1u , hu),

where

he(u) =
∫
∞

0

1
√
2πw

e−
u
2w dGe(w), (5)

hu(u) =
∫
∞

0

1
√
2πw

e−
u
2w dGu(w),

with Ge(·) and Gu(·) mixing distributions satisfying Ge(0) = Gu(0) = 0. Also, El1(µ, φ, h) denotes an elliptical random
variable with location µ, scale φ−1 and generator function h(·). In this case, the elliptical model is a compound normal
model. See Fang et al. [10] and Arellano-Valle et al. [11] for important reviews on elliptical distributions. As considered in
Bolfarine and Arellano-Valle [7], the independent elliptical model is non-differential.
The dependent elliptical MEM works with the joint distributions of e = (e1, . . . , en)t and of u = (u1, . . . , un)t , which

follows by considering that
e ∼ Eln(0, φ−1e In, he),
u ∼ Eln(0, φ−1u In, hu),

where In denotes the n-dimensional identity matrix. The generator functions he and hu satisfy (5) for mixing distributions
Ge(·) and Gu(·) such that Ge(0) = Gu(0) = 0. Note that the usual MEM normal model proceeds by letting Ge and Gu degen-
erate into a single point, in which case the components of e are independent. Similar results hold for the vector u. However,
for models different from the normal (Student-t model, for example), elements of e are uncorrelated but dependent. As con-
sidered in Bolfarine and Arellano-Valle [7], the dependent elliptical model is a weak differential measurement error model.
Zellner [12] shows the goodness in the analysis of measurement error model, considering the term of error with

dependent elliptical distribution. The case addressed by this author, is the Student-tmodel. For the elliptical case analyzed by
us, as mentioned in our article, the Dependent Model presents fewer difficulties in the analysis because the semiparametric
case leads to the Parametric one.
The dependent assumption implies that the joint distribution of the terms of error is Multivariate Elliptical, a broader

distribution, and therefore more flexible, than the joint distribution of independent elliptical variables (Independent Ellip-
tical model). This author presents a few illustrations that validate the importance and usefulness of this model. In general
their applicability is related with the logic associate with the concept of dependent error, for the particular faced problem.
This concept is linked to the dependence of the observations, which results in such errors. Some cases are, for example,

grouped individuals (consumers, enterprisers), the runs of a single experiment (measurements with a single instrument,
market returns in a particular moment), etc.
In this paper, we extend both the elliptical models described above by considering that the mixing distributions

generating the elliptical family follows discrete mixtures as well as a Dirichlet process prior. We believe that the family
of models considered are more general than the family of models used in Muller and Roeder [8] to describe the distribution
of the unknown (true) covariate x. An alternative robust classical approach (termed corrected score) in the sense that it is
not required to specify a distribution for x, appears in Nakamura [13]. However, the corrected score approach does not seem
to be for some of the models (Student-t , for example) studied in this paper.
The paper is organized as follows. Section 2 presents the semiparametric approach for the independent elliptical MEM.

Discrete and Dirichlet process priors are considered for themixing parameter. Posterior implementation is carried out using
theMCMC implementation considered in [14,15]. Section 3 investigates the dependent elliptical situation, where it is shown
that the situation of the Dirichlet process prior reduces to the usual parametric mixture model with gamma distributions as
the mixing distribution. Section 4 presents the computational implementation. Section 4.1 presents a real data application
which illustrates the usefulness of the presented approach. Section 4.2 compares graphically semiparametric and parametric
methods, based on simulated data. Finally, Section 5 presents some extensions and areas of future research.
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