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a b s t r a c t

Van Trees’ Bayesian version of the Cramér–Rao inequality is generalised here to the context
of smooth loss functions on manifolds and estimation of parameters of interest. This
extends the multivariate van Trees inequality of Gill and Levit (1995) [R.D. Gill, B.Y. Levit,
Applications of the van Trees inequality: a Bayesian Cramér–Rao bound, Bernoulli 1 (1995)
59–79]. In addition, the intrinsic Cramér–Rao inequality of Hendriks (1991) [H. Hendriks, A
Cramér–Rao type lower bound for estimatorswith values in amanifold, J.Multivariate Anal.
38 (1991) 245–261] is extended to cover estimators which may be biased. The quantities
used in the new inequalities are described in differential-geometric terms. Some examples
are given.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Let {f (·; θ) : θ ∈ Θ} be a family of probability density functions on a sample spaceX, where the parameter space Θ is
an open set in Rd. One of the fundamental results in mathematical statistics is that (under weak regularity conditions) any
unbiased estimator θ̂ of θ satisfies the multivariate Cramér–Rao inequality

Eθ

[(
θ̂ (x)− θ

) (
θ̂ (x)− θ

)T]
≥ I(θ)−1, (1.1)

i.e. Eθ [(θ̂(x)− θ)(θ̂(x)− θ)T ]− I(θ)−1 is positive semi-definite. Here Eθ denotes expectation with respect to f (·; θ) and I(θ)
denotes the Fisher information matrix at θ . The matrix Eθ [(θ̂(x)− θ)(θ̂(x)− θ)T ] is the variance matrix of θ̂ (x).
There are various Bayesian versions of the Cramér–Rao inequality. For the simplest of these, let π be a proper prior

distribution on Θ . Then taking the expectation of (1.1) over π and using convexity of the function X 7→ X−1 on the set of
positive-definite d× dmatrices yield the Bayesian Cramér–Rao inequality

Eπ

[
Eθ

[(
θ̂ (x)− θ

) (
θ̂ (x)− θ

)T]]
≥ Eπ [I(θ)]−1 , (1.2)

where Eπ denotes expectation with respect to π . IfΘ is connected then equality holds in (1.2) if and only if the probability
density functions have the form

f (x; θ) =
a(x)
λ(θ)

exp
{
−

(
θ̂ (x)− θ

)T
Ψ

(
θ̂ (x)− θ

)
− c(Ψ )

}
(1.3)
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for some positive function a on X, positive-definite matrix Ψ and constant c(Ψ ). For a given function a, the family of
probability density functions obtained from (1.3) by letting both θ and Ψ vary is a proper multivariate dispersion model
in the sense of Jørgensen and Lauritzen [1]. One consequence of (1.2) is that if θ̂ is unbiased then

Eπ
[
varθ

(
θ̂ i(x)

)]
≥ Eπ [Iii(θ)]−1 0 ≤ i ≤ d,

where Iii(θ) denotes the (i, i)-element of I(θ). This inequality was given by Gart (see (3.9) of [2]). The Bayesian Cramér–Rao
inequality (1.2) can be generalised to the case in which θ̂ may be biased. It is straightforward to show that

Eπ

[
Eθ

[(
θ̂ (x)− τ(θ)

) (
θ̂ (x)− τ(θ)

)T]]
≥ Eπ

[
τ ′(θ)

]
Eπ [I(θ)]−1 Eπ

[
τ ′(θ)

]T
, (1.4)

where τ(θ) = Eθ [θ̂ (x)] and τ ′(θ) = dτ(θ)/dθ .
A more interesting Bayesian inequality is the van Trees inequality

Eπ

[
Eθ

[(
θ̂ (x)− θ

) (
θ̂ (x)− θ

)T]]
≥ {Eπ [I(θ)]+ I(π)}−1 (1.5)

([3], pp. 72, 84), where the estimator θ̂ need not be unbiased and I(π) is the information in the prior π , defined as

I(π) = Eπ

[(
∂ log λ(θ)

∂θ

)T
∂ log λ(θ)

∂θ

]
, (1.6)

λ being the density of π with respect to Lebesgue measure. Letac [4] has shown that equality holds in (1.5) if and only if the
family {f (·; θ) : θ ∈ Θ} is a general exponential family with canonical statistic {Eπ [I(θ)]+ I(π)}−1 θ̂ (x).
In the case Θ = R, inequality (1.5) was given by Schützenberger [5]. A careful version of (1.5) under very weak

assumptions was given (for Θ = R) by Lenstra [6]. Some applications and generalisations have been considered by
Bobrovsky et al. [7] and by Brown and Gajek [8]. Other generalisations and various applications to engineering are presented
in the anthology by van Trees and Bell [9].
If θ̂ is unbiased then the van Trees inequality (1.5) follows immediately from theBayesianCramér–Rao inequality (1.2). On

the other hand, Letac [10] has pointed out that if θ̂ is allowed to be biased then (1.5) is not a consequence of the generalisation
(1.4) of (1.2).
Gill and Levit [11], Section 4, generalised the van Trees inequality (1.5) to parameters of interest and weighted quadratic

loss as follows. LetΩ be an open set in Rp, G be a positive-definite symmetric p× pmatrix-valued function onΘ , and A be
a p× dmatrix-valued function onΘ . The prior divergence of A is the p-vector field divπA onΩ with components

(divπA)a =
1
λ

d∑
i=1

∂

∂θ i

(
Aiaλ

)
,

where θ = (θ1, . . . , θd) and Aia (for i = 1, . . . , d and a = 1, . . . , p) are the components of A. The G-weighted information in
the prior π given by A is the scalar IG(A, π) defined as

IG(A, π) = Eπ
[
(divπA)T (θ)G(θ)−1 (divπA) (θ)

]
.

Gill and Levit showed that, under mild regularity conditions, for any estimator φ̂ of φ(θ),

Eπ

[
Eθ

[(
φ̂(x)− φ(θ)

)T
G(θ)−1

(
φ̂(x)− φ(θ)

)]]
≥

{
Eπ
[
tr
(
A(θ)G(θ)−1 ∂φ(θ)

∂θ

)]}2
Eπ
[
tr
(
G(θ)−1A(θ)T I(θ)A(θ)

)]
+ IG(A, π)

. (1.7)

Inequality (1.7) has been used by Gill and Levit [11] to deriveminimax convergence rates in some non-parametric and semi-
parametric problems and by Gill [12] to obtain an asymptotic lower bound on Bayes risk in quantum statistical estimation.
A reasonable general setting for parametric inference involves parameter spaces that are differential manifolds. Thus it

is striking that the inequality (1.7) has the implicit restrictions that (i) both the full parameter space Θ and the spaceΩ of
interest parameters are subsets of Euclidean spaces, (ii) the loss function is quadratic. The objectives of this note are (a) to
give a version of inequality (1.7) for arbitrary smooth loss functions on manifolds, (b) to provide geometric interpretations
of the quantities that arise. These objectives are achieved by using the derivative of the loss function, i.e. by working in
cotangent spaces.
Section 2 presents the intrinsic van Trees inequality for general smooth loss functions. Various geometric Cramér–Rao

inequalities are given in Section 3. Some examples are considered in Section 4.
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