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a b s t r a c t

Conditions are given under which the empirical copula process associated with a random
sample from a bivariate continuous distribution has a smaller asymptotic covariance
function than the standard empirical process based on observations from the copula.
Illustrations are provided and consequences for inference are outlined.
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1. Introduction

Consider a pair (X, Y ) of continuous random variables whose joint and marginal cumulative distribution functions are
defined for all x, y ∈ R by

H(x, y) = Pr(X 6 x, Y 6 y), F(x) = Pr(X 6 x), G(y) = Pr(Y 6 y),
respectively. The transformed variables U = F(X) and V = G(Y ) are then uniform on [0, 1] and their joint distribution
function, defined at every u, v ∈ [0, 1] by

C(u, v) = Pr(U 6 u, V 6 v),
is the unique copula C associated with H . The two functions are related through the equation C(u, v) = H{F−1(u),G−1(v)},
where F−1(u) = inf{x ∈ R : F(x) > u} and G−1(v) = inf{y ∈ R : G(y) > v} for all u, v ∈ (0, 1). Inference on C is of interest,
as it characterizes the dependence in the pair (X, Y ); see, e.g., [1,2]. In particular, all margin-free concepts and measures
of association such as Kendall’s tau, Spearman’s rho, Blomqvist’s beta, Gini’s gamma and Spearman’s footrule depend only
on C .
Let (X1, Y1), . . . , (Xn, Yn) be a random sample from H and write Ui = F(Xi), Vi = G(Yi) for all i ∈ {1, . . . , n}. When F and

G are known, a natural estimate of C is then given by the empirical distribution function of the sample (U1, V1), . . . , (Un, Vn),
defined at every u, v ∈ [0, 1] by

Cn(u, v) =
1
n

n∑
i=1

1(Ui 6 u, Vi 6 v).
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In fact, standard results from the theory of empirical processes [3] imply that Cn = n1/2(Cn − C) converges weakly, as
n→∞, to a centered Gaussian process C on [0, 1]2 with continuous trajectories and covariance function given by

cov{C(u, v),C(s, t)} = C(u ∧ s, v ∧ t)− C(u, v)C(s, t),

for all u, v, s, t ∈ [0, 1], with a ∧ b = min(a, b) for arbitrary a, b ∈ R.
When the margins F and G are unknown, as is generally the case in practice, they can be estimated by their empirical

counterparts, Fn and Gn. A surrogate sample from C is then given by the pairs (Û1, V̂1), . . . , (Ûn, V̂n), where Ûi = Fn(Xi) and
V̂i = Gn(Yi) for all i ∈ {1, . . . , n}. The corresponding empirical distribution function, defined at every u, v ∈ [0, 1] by

Ĉn(u, v) =
1
n

n∑
i=1

1(Ûi 6 u, V̂i 6 v),

is traditionally called the empirical copula [4], although it is not a copula stricto sensu. The function Ĉn provides a rank-based,
consistent estimate of C often used in practice for copula model selection and goodness-of-fit purposes; see, e.g., [5,6].
To be specific, let Ċ1(u, v) = ∂C(u, v)/∂u and Ċ2(u, v) = ∂C(u, v)/∂v denote the partial derivatives of an arbitrary

copula C , known to exist almost everywhere [2, Chapter 2]. Now assume that they exist in fact everywhere and that they are
continuous on (0, 1)2. Under these mild regularity conditions, it is then well known [7,8] that the empirical copula process
Ĉn = n1/2(Ĉn − C) converges weakly, as n→∞, to a centered Gaussian process Ĉ defined at every u, v ∈ [0, 1] by

Ĉ(u, v) = C(u, v)− Ċ1(u, v)C(u, 1)− Ċ2(u, v)C(1, v).

In fact, it is observed in [8, Theorem 4] that the assumption on the existence and continuity of the partial derivatives is
necessary for the empirical copula process to converge on [0, 1]2.
In the copulamodeling literature, the difference betweenC and Ĉ is often interpreted as ‘‘the price to pay for the fact that

themargins are unknown’’. This suggests that if F andGwere known, itwould be preferable to base the inference on Cn rather
than on Ĉn. It is shown here, perhaps surprisingly, that the opposite is true under weak positive dependence conditions on
C . When this happens, procedures based on Ĉ are thus more efficient than the analogous procedures based on C.
The key result is stated and illustrated in Section 2, along with a partial extension to the case of negative dependence.

In Section 3, circumstances are delineated under which a dependence parameter, say θ = T (C), can be estimated more
efficiently by a rank-based estimate θ̂n = T (Ĉn) than by the analogous estimate θn = T (Cn)which exploits the knowledge
of the margins. Concluding remarks are given in Section 4, along with a partial multivariate extension of the main result. All
technical arguments are collected in the Appendix.

2. Main result

Following [9], suppose that the two continuous random variables X and Y are such that the mappings t 7→ Pr(X 6 x |
Y 6 t) and t 7→ Pr(Y 6 y | X 6 t) are both decreasing in t whatever x, y ∈ R. These tail monotonicity conditions, jointly
referred to as left-tail decreasingness (LTD), imply that the pair (X, Y ) satisfies the concept of positive quadrant dependence
(PQD). From [10], this means that for all x, y ∈ R,

Pr(X 6 x, Y 6 y) > Pr(X 6 x) Pr(Y 6 y).

Both PQD and LTD can be stated in terms of the underlying copula only. As shown, e.g., in [2, Chapter 5], PQD holds if and
only if C(u, v) > uv for all u, v ∈ [0, 1], while the LTD property is verified if for almost all u, v ∈ (0, 1),

Ċ1(u, v) 6
C(u, v)
u

, Ċ2(u, v) 6
C(u, v)
v

. (1)

Many bivariate models with positive dependence meet Conditions (1), including the bivariate Normal, Beta, Gamma,
Student and Fisher distributions. Other examples are provided by the Cook–Johnson bivariate Pareto, Burr and logistic
distributions, Gumbel’s bivariate exponential and logistic distributions, the Ali–Mikhail–Haq bivariate logistics, the Clayton,
Frank, Plackett and Raftery families of copulas.
As it turns out, the LTD property implies a dominance relation between the asymptotic covariance functions of the

empirical processes C and Ĉ. A formal statement of this fact is given below and proved in the Appendix.

Proposition 1. Suppose that C is an LTD copula whose partial derivatives Ċ1 and Ċ2 exist everywhere and are continuous on
(0, 1)2. Then for all u, v, s, t ∈ [0, 1],

cov{Ĉ(u, v), Ĉ(s, t)} 6 cov{C(u, v),C(s, t)}. (2)

Inequality (2) seems to have been intuited in [11] in the context of copula density estimation; a heuristic explanation
was offered, but a formal result was neither stated nor proved. Proposition 4.2 in [12] is also a forerunner of Proposition 1
in the case of extreme-value copulas. As shown in [13], the latter are monotone regression dependent in the sense of [10];
this concept of dependence is stronger than the LTD property.
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