
Journal of Multivariate Analysis 112 (2012) 48–62

Contents lists available at SciVerse ScienceDirect

Journal of Multivariate Analysis

journal homepage: www.elsevier.com/locate/jmva

Uniqueness of linear factorizations into independent subspaces
Harold W. Gutch a,c,∗, Fabian J. Theis b,c

a Max Planck Institute for Dynamics and Self-Organization (MPIDS), 37077 Goettingen, Germany
b CMB, Institute of Bioinformatics and Systems Biology, German Research Center for Environmental Health, 85764 Neuherberg, Germany
c Technical University of Munich, Arcisstrasse 21, 80333 München, Germany

a r t i c l e i n f o

Article history:
Received 26 April 2010
Available online 19 June 2012

AMS 2000 subject classifications:
62E10
62H25

Keywords:
Statistical independence
Independent component analysis
Independent subspace analysis
Separability
Inverse models

a b s t r a c t

Given a randomvectorX, we address the question of linear separability ofX, that is, the task
of finding a linear operator W such that we have (S1, . . . , SM) = (WX) with statistically
independent random vectors Si. As this requirement alone is already fulfilled trivially by
X being independent of the empty rest, we require that the components be not further
decomposable. We show that if X has finite covariance, such a representation is unique up
to trivial indeterminacies. We propose an algorithm based on this proof and demonstrate
its applicability. Related algorithms, however with fixed dimensionality of the subspaces,
have already been successfully employed in biomedical applications, such as separation
of fMRI recorded data. Based on the presented uniqueness result, it is now clear that also
subspace dimensions can be determined in a unique and therefore meaningful fashion,
which shows the advantages of independent subspace analysis in contrast to methods like
principal component analysis.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Assume a random vector S consisting of statistically independent components Si, none of which is Gaussian (normally
distributed). If the components of a linear mixing AS then again are statistically independent, one can show that A is at most
the product of a permutation and scaling within the components, which originally was shown using the Darmois–Skitovitch
theorem [11,21,30]. Under the additional assumption of finite covariance of S, onemay additionally allow atmost one of the
Si to be Gaussian [10]. The assumption of finite covariance actually is not required for this to hold [13], but if one assumes it,
a simpler proof is possible, based on the idea that the characteristic function of S factorizes, so its logarithm has a diagonal
Hessian almost everywhere [33].

This property of random variables has driven the development of algorithms performing the so-called Independent
Component Analysis (ICA) under some approximations of statistical independence [4,10,20,37]. Exact cost functions, the
so-called contrasts such as mutual information, are difficult to estimate in practice, where the random vector in question is
only known up to some finite precision, so many approximations have been extensively studied. Such algorithms have been
successfully used in various fields, e.g. signal processing, biomedical imaging and analysis of financial data, where it was
argued that the data sets to be analyzed can be approximated well enough by modeling them as random variables mixed in
a linear fashion; see [9,18] and references therein.

Apart from the question of validity when transferring the mathematical theory to real life data sets, another problem is
apparent: What if a given random vector X has no such representation? This motivates the question if the original claim
has a straight-forward extension to higher dimensions: if we write (S1, . . . , SM) := WX with independent random vectors
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Si of which at most one is Gaussian, again, are these unique up to permutation and invertible linear transformations (the
multidimensional translation of scaling) within the Si? Loosened assumptions to the ICA model where specifically such
subspaces in data were sought for have gained a lot of interest in recent years; see e.g. [3,8,14,24,28,40]. The task of finding
a basis inwhich a randomvectorX has this property is usually denoted Independent Subspace Analysis (ISA), as one typically
reads the independent random vectors gained here as data subsets or data subspaces [7]. Obviously this task requires
someminimality constraint, as, given such an independent representation, we might arbitrarily group together some of the
components and thus of course get two representations differing in more than just permutation and linear transformations.
Ourminimality constraint is the inability to decompose any of the components even further, a property we call irreducibility
of the components.

Our main result is the following uniqueness theorem.

Theorem 1.1. The decomposition of a random vector X with existing covariance into independent, irreducible components is
unique up to order and invertible transformations within the components and an invertible transformation in the possibly higher-
dimensional Gaussian component.

Transferring this mathematical statement to the real world, the conclusion now is that every kind of data that one can
model as a random vector inherently has a unique factorization into subspaces. This statement has far wider applicability
than ICA, which states uniqueness of a factorization only if one exists at all within the limits of the model—i.e. if there is a
decomposition into independent one-dimensional components. In contrast to this, ISA is applicable to almost any kind of
high-dimensional data that can be modeled as a random vector—the only requirement is finite covariance.

Thismanuscript is structured as follows. In Section 2we define the notation used and the frameworkwework in and state
a few simple lemmata used. Themain part of thismanuscript, Section 3, consists of the proof of Theorem 1.1. In Section 4, we
propose an algorithmwhose main ideas are based on the theoretical proof and demonstrate its applicability in a simulation
study. Finally, in Section 5 we shed some light on the practical usefulness of this result, compare it with the literature and
address some open questions.

Some parts of this work were presented at the ICA 2007 conference [15], stating Theorem 1.1, however lacking the proof
and the algorithmic approach.

2. Definition of independent subspace analysis

We will define the analyzed model and review a few properties of characteristic functions. We restrict this analysis to
the real case, that is, real valued random vectors and real linear mixings thereof, although extensions to the complex case
are possible.

2.1. Notation

In order to be able to quickly differentiate between scalars and vectors, scalars are depicted in regular font, e.g. x ∈ Rwhile
vectors and matrices are depicted in bold font, e.g. x ∈ Rn. Random values and vectors are always depicted in uppercase
letters, e.g. S and S, and we will only need the two letters S, and X (and regular typeface versions thereof) for these; all
other uppercase letters used represent real valued matrices. In order to keep the notation as simple as possible, vectors will
often be written in rows, e.g. x = A(v1, v2) instead of x = A(v⊤1 , v⊤2 )⊤. The symbol ∂i denotes the i-th partial derivative
operator, so for a function depending on x = (x1, . . . , xn), we have ∂i =

∂
∂xi

. We write df for the differential of an f ∈ C1,
and we depict the Hessian of an f ∈ C2 with Hf , that is e⊤i Hf ej = ∂i∂jf . We write df |x instead of (df )(x), the differential of
f evaluated at x, and similarly Hf |x instead of Hf (x), the Hessian of f evaluated at x.

2.2. Irreducibility

Let us now introduce the key notion of irreducibility and point out the special role of Gaussian random vectors.

Definition 2.1. An n-dimensional random vector X is said to be reducible if it can be written as X = A(S1, S2) with some
invertible n × n-matrix A, a k-dimensional random vector S1 and an (n − k)-dimensional random vector S2, where S1 is
independent of S2. A random vector that is not reducible is called irreducible.

Remark 2.1. For example, any n-dimensional Gaussian random vector is reducible if n > 1: Gaussians are fully defined by
their first and second order moments, so here independence is equivalent to decorrelation, and for every random vector
X with finite covariance there is some invertible matrix A such that AX is decorrelated (see Lemma 3.1). Therefore, an n-
dimensional Gaussian can always be fully reduced to one-dimensional components.

Obviously both properties, irreducibility and reducibility, are preserved under any invertible linear transformation.
A decomposition (X1, . . . ,XL) = X of a random vector X is said to be independent, if the random vectors Xj (j = 1, . . . , L)

are mutually statistically independent. It is said to be irreducible, if the vectors Xj additionally are irreducible.
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