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a b s t r a c t

In normal classification analysis, there may be cases where the population distributions
are perturbed by a screening scheme. This paper considers a new classification method
for screened data that is obtained from the perturbed normal distributions. Properties of
each population distribution is considered and the best region for classifying the screened
data is obtained. These developments yield yet another optimal rule for the classification.
The rule is studied from several aspects such as a linear approximation, error rates, and
estimation of the rule using the EM algorithm. Relationships among these aspects as well
as investigation of the rule’s performance are also considered. The screened classification
ideas are illustrated in detail using numerical examples.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

In a two-group classification analysis, the goal is to take an input vector Y and to assign it to one of two discrete classes
Πi with a class level i = 1, 2. Researchers can use a variety of methods in a two-group classification analysis. Many of
thesemethods assume, either explicitly or implicitly, themultivariate normal distribution for Y given the classmembership.
Anderson [1], Johnson andWichern [8], and other researchers provide derivations of the classification regions and construct
the optimal rules for assigning future cases to classes on the basis of their measured Y. Pardoe et al. [14] and Bishop [4]
provide a comprehensive review of the statistical methodology of the classification.

In practice, however, researchers may encounter cases where the classes are screened by an interval C = (a, b) of an
underlying external normal variable Y0 ∼ N(µ0, σ

2
0 ), and where the distribution of the input vector Y is perturbed by the

screening scheme. As an example, consider a case where college admission officers wish to set up an objective criterion
(with an input vector Y) for admitting students for matriculation; however, the admission officers must first ensure that
the students have passed the first screening process. The first screening scheme may be defined by the interval C of a
criterion variable Y0 (which includes SAT scores, high-school GPA) so that only students who satisfy Y0 ∈ C can proceed
to the admission process. In this case, we encounter a crucial problem for applying the normal classification; given the
screening scheme Y0 ∈ C, the assumption of themultivariate normal distribution forY is not valid. In fact, each screened class
distribution of X d

= [Y|Y0 ∈ C] belongs to a family of weighted multivariate normal distributions provided Cov(Y, Y0) ≠ 0.
The distribution of X, which has been studied by Kim [9], is as follows. Let Y∗

∼ Np+1(µ
∗,Σ∗), where

Y∗
= (Y0, Y⊤)⊤, µ∗

= (µ0,µ)
⊤, and Σ∗

=


σ 2
0 σ0δ

⊤

σ0δ Σ


. (1.1)
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Then the distribution of the screened normal vector X d
= [Y|Y0 ∈ C] is WTN (a,b)p (µ∗,Σ∗), which is a weighted multivariate

two-sided conditioning normal distribution (WTNp). Suppose that Z(A,B) denotes a doubly truncated N(0, 1) variate with
respective upper and lower truncation points B and A, where A < B; also suppose that its distribution is written as
TN(A,B)(0, 1). According to (15) of [2], a stochastic representation of theWTNp distribution is

X = µ + Z(v(a),v(b))δ + (Σ − δδ⊤)1/2Z, (1.2)

whereZ is theNp(0, Ip) randomvector, and it is independent of Z(v(a),v(b)), where v(a) = (a−µ0)/σ0, and v(b) = (b−µ0)/σ0.
So that X reduces to Np(µ,Σ) when δ = 0. Thus (1.2) indicates an intrinsic structure of the WTPp distributions, and it
reveals a type of departure from the multivariate normal law. With respect to the continuous but non-normal input vector
X, Lachenbruch et al. [12] note that the performance of the normal classification can be very misleading. This is the problem
that motivates our investigation.

In this paper, we introduce a two-group classification method that accounts for the screened classes, Πi, i = 1, 2,
where the screening is conducted via an interval C of an underlying external normal variable Y0. This method is associated
with a classification with the skew-normal distributions considered by Azzalini and Capitanio [3] and Reza-Zadkarami and
Rowhani [15]; however, as far aswe know, no studies have offered a detailed examination of the performance of the screened
normal classification analysis (SCA). Interest in the SCA comes from both the theoretical and the applied standpoint. From
the theoretical view, the SCA considers another class conditional probability distribution p(Πi | x), which is associated with
(1.2), in an inference stage. Then this distribution used to derive an optimal classification rule and to study its performance.
To this end, Section 2 suggests an optimal classification rule that is induced by the WTNp population distributions, which
contain the classical normal classification rule as a special case. Section 3, approximately computes the total probability of
misclassification (TPM) of the SCA, and it proposes some measures based on TPM to evaluate the performance of the SCA;
thesemeasures include the screening effect and its robustness. Finally, Section 4 describes the EM algorithm so that wemay
estimate the unknown parameters of theWTNp population distributions. Section 5 approaches from the applied viewpoint;
it provides numerical illustrations, a new multivariate technique for analyzing a screened data, and broadens the utility of
theWTNp distributions.

2. Screened classification rule

Suppose the joint distributions of Y∗
= (Y0, Y⊤)⊤ associated with two populations Πi are Y∗

∼ Np+1(µ
∗

i ,Σ
∗

i ), and
suppose the populations are screened by an underlying external variable Y0, where the screening condition is {a < Y0 < b}
for i = 1, 2. Then the distribution ofΠi is that of [X | Πi]

d
= [Y | Πi, a < Y0 < b] ∼ WTN (a,b)p (µ∗

i ,Σ
∗

i ) for i = 1, 2, where X
denote vectors of screenedmeasurements from each population. The classification analysis for the screened populations can
be developed in the more general context ofWTNp distributions. For the present study, however, we shall restrict ourselves
to a rather simple problem of classification between two screened populations, under the assumptions that they are differ
only in the location parameters.

Consider the case of twoWTNp population distributions with an equal scale matrix so that [X | Π1] ∼ WTN (a,b)p (µ∗

1,Σ
∗)

and [X | Π2] ∼ WTN (a,b)p (µ∗

2,Σ
∗), where µ∗

i = (µ0i,µ
⊤

i )
⊤, i = 1, 2, and Σ∗ is the scale matrix defined in (1.1). Assume

that C(i | k) denote the cost associated with classifying x into Πi when in fact the correct decision should be to classify x
intoΠk, k = 1, 2. Then, as a direct consequence of Theorem 6.3.1 of [1], the region of classification intoΠ1, R1, is the set of
x′s, x ∈ Rp, for which

f (x | Π1)

f (x | Π2)
≥
π2C(1 | 2)
π1C(2 | 1)

, (2.1)

where πi is prior probability ofΠi and

f (x | Πi) = φk(x; µi,Σ)
Φ

ξ vi(b)− λ⊤(x − µi)


− Φ


ξ vi(a)− λ⊤(x − µi)


Φ(vi(b))− Φ(vi(a))

(2.2)

by Kim [9]. Here φp(·; µ,Σ) is the pdf of the Np(µ,Σ) variate, vi(a) = (a − µ0i)/σ0, vi(b) = (b − µ0i)/σ0, ξ =

(1 − δ⊤Σ−1δ)−1/2, and λ⊤
= ξδ⊤Σ−1. This yields the best regions of classification that minimizes expected cost of

misclassification (ECM) given by

R1: d(x) ≥ α, and R2: d(x) < α, (2.3)

where α = log{π2C(1 | 2)/(π1C(2 | 1))},

d(x) = (µ1 − µ2)
⊤Σ−1x + Q (x)−

1
2
(µ1 − µ2)

⊤Σ−1(µ1 + µ2),

Q (x) = log

Φ(ξv1(b)− λ⊤(x − µ1))− Φ(ξv1(a)− λ⊤(x − µ1))

Φ(ξv2(b)− λ⊤(x − µ2))− Φ(ξv2(a)− λ⊤(x − µ2))


+ log


Φ(v2(b))− Φ(v2(a))
Φ(v1(b))− Φ(v1(a))


.
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