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1. Introduction

We propose a new estimator for the regression coefficients in a linear regression model, which is robust to
‘contamination’. Our estimator is inspired by the least median of squares (LMS) estimator of Rousseeuw [27] and the Laplace
estimator of Chernozhukov and Hong [3]; see also Jun et al. [18]. Like Laplace estimators, our estimator is defined as the
ratio of two integrals involving an exponential transform of (in our case) the LMS objective function, but this is where the
similarity ends.

Suppose that the parameter vector of interest 6, is the unique minimizer of a population objective function §2 over a
compact parameter space . Laplace estimators then employ the fact that 6, satisfies

. [6w(0) exp{—a,22(0)}db
6o = lim ,
n—oo [ (6) exp{—an$2(60)}do
where @ is a pseudo-prior defined on ® and {«,} is a scalar-valued deterministic sequence diverging to infinity with the
sample size n. Note here that the density @ (0) exp{—an.{z(@)}/f w (0) exp{—a,$2(0)}dO becomes more concentrated

around 6y as «;, increases. Replacing £2 in (1.1) with its sample analog @' results in a Laplace estimator. If a quadratic

expansion of 2 is available then the Laplace estimator is generally 4/n-consistent [3] and the divergence rate of o, is of

lesser importance. In the absence of such a quadratic expansion, as in the case of the LMS estimator, the resulting estimator

is not /n-consistent, and the divergence rate of o, partly determines the convergence rate of the Laplace estimator [18].
We, instead, use the fact that in our case £2 is symmetric around 6y, which implies that

[0 exp{—2(6))do
* 7 [exp{—(6)}do

(1.1)

(1.2)
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Table 1
Comparison of robust estimators of the coefficients in a linear regression model.
Estimation method Acronym BDP=0.5  GES finite LSS finite Jn Normal Comp. # Equivariance
rate oper.

Scale Affine Regr.

Huber [17] HUB v v ? v v
Koenker and Bassett [21] LAD v v n a v v v
Krasker [22] HK v v v ? v v
Siegel [32]° RM v v/ v v nd < v v
Mallows [23] MAL v v v v ? v v
Rousseeuw [27] LMS v v nd e v v v
Rousseeuw [27] LTS v 4 v v nlogn v 4 4
Rousseeuw and SEST v v v n®logn v v v
Yohai [29]

Yohai [33] MM v v v ? v v
Yohai and Zamar [34] TAU v v v ? 4 4
Croux et al. [5] GS v v v n*logn f v v
Hossjer [16] LTA v v v 4 nlogn 4 4 v
Chang et al. [2] HBRR v vE ? v v ? v v v
Zinde-Walsh [35] SLMS v v ? v v
Cizek [4] GTE v v v v ? v v v
New v v h v v n v v

2 With preprocessing; see Portnoy and Koenker [24].

b Asymptotics are due to Hossjer [16].

d is the number of regressors.

If the constant is not varied, infinite if varied; see Davies [7].
See Croux et al. [5].

See Croux et al. [5]; d is the number of regressors.

& If the constant is not varied.

" Can be modified to have a finite LSS.
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where the integrals are taken over the entire Euclidean space. There are four fundamental differences between (1.1) and
(1.2):in (1.2) there is no limit, there is no «,, there is no compact parameter space requirement, and there is no @w. As there
is no limit in (1.2), ;, is not needed anymore. Since the symmetry of §2 around 6y is used, the parameter space should not
be artificially restricted and no prior can be used. Our estimator 0 is obtained by replacing £2 in (1.2) with Q2.

In this paper we focus our attention on the case in which @ is the LMS objective function, or a close relative thereof.
We show that, subject to assumptions outlined in subsequent sections, 0is J/n-consistent and asymptotically normal with
many robustness properties, which will be further explained below. Please note that although our estimator resembles a
Bayes estimator, it is quite different in that with Q being the LMS objective function, exp(—fl) is not a likelihood.

Instead of basing an estimator on (1.2), as we do in this paper, one could alternatively consider @h, the Laplace estimator

using 2. However, as the LMS objective function does not allow for a quadratic expansion [19], 9,_ will not be »/n-consistent.
Indeed, this scenario is similar to the one studied in [ 18] for the objective functions of other /n-consistent estimators.

The pioneering work of Huber [17] has spawned an abundance of papers proposing estimators with ever more desirable
robustness properties. The main differences between the estimators are their robustness properties, their asymptotic
behavior absent contamination, their equivariance properties, and their degree of computational complexity. These
properties are summarized in Table 1. Our estimator is attractive in all four respects, as the exposition below will make
apparent.

One notion of robustness is the finite sample breakdown point [8],> which is the fraction of the sample that must be
changed to push the value of an estimator arbitrarily far. The breakdown point of the least squares estimator equals 1/n
and the breakdown point of the least absolute deviations estimator [21] depends on the regressor distribution and can
be arbitrarily close to zero in large samples [15, p. 328]. Most estimators, however, have a finite sample breakdown point
close to 0.5 if the regressors are in general position [27]. Notable exceptions are Huber [17], Krasker [22], Mallows [23]. Our
estimator has the best achievable breakdown point of regression invariant estimators, determined in [27].

Since the requirement that regressors are in general position is strong, we provide results that are more general than that.
Specifically, it can be preferable (from a breakdown point perspective) to use a quantile g other than the median. Details can
be found in Section 3.

Other commonly used notions of robustness are the gross error sensitivity (GES) and the local shift sensitivity (LSS), both
due to Hampel [12,14]. The GES of an estimator is finite if its influence function [12,14] is bounded. Many, but not all, robust
estimators have a bounded influence function, including ours.

The LSS is finite if the partial derivative of the influence function with respect to regressor and regressand values is
bounded.? We know of only one estimator, namely Mallows [23], which is known to have a finite LSS. The proposed estimator

2 an asymptotic version can be found in [13] and a different breakdown point concept in [30,31].
3 The definition of the LSS is more general in that it allows for left and right derivatives to be different.
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