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a b s t r a c t

This article studies the maximum likelihood inference on a class of Wiener processes with
random effects for degradation data. Degradation data are special case of functional data
with monotone trend. The setting for degradation data is one on which n independent
subjects, each with a Wiener process with random drift and diffusion parameters, are
observed at possible different times. Unit-to-unit variability is incorporated into the
model by these random effects. EM algorithm is used to obtain the maximum likelihood
estimators of the unknown parameters. Asymptotic properties such as consistency and
convergence rate are established. Bootstrap method is used for assessing the uncertainties
of the estimators. Simulations are used to validate the method. The model is fitted to
bridge beam data and corresponding goodness-of-fit tests are carried out. Failure time
distributions in terms of degradation level passages are calculated and illustrated.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

In some studies where the subjects are put on test at time zero, these subjects degrade over time. Usually continuous
observation of degradation for these subjects is not possible. The degradation of each subject may be observed at each of
several times, where the number of observation times and observation times themselves are allowed to vary across the
subjects. Data of this type are called degradation data. Degradation data are special case of functional data with monotone
trend. Degradation data have applications in many fields, such as HIV study and industrial reliability. For example, it is
suggested that the immune system of a person infected with the HIV virus degrades over time [1]. CD4 counts constitute a
critical assessment of the status of the immune system and CD4 counts are commonly used markers for the health status
of HIV infected persons. In reliability area, the data from fatigue crack growth subject to loading cycles [2,3] and bridge
beams subject to erosion of chloride ion ingression [4] are typical degradation data. Degradation data are a very rich source
of survival information. In many tests, the failure time data are supplemented by degradation data and degradation data
offer many advantages over failure time data. For general discussion of degradation models, see [5–7].
Wiener processes and extensions to them have been used as models for degradation data (e.g. [8–11]). Let Λ(t) be a

nondecreasing function. The nonhomogeneousWiener process Y (t) has independent increments1Y (t) = Y (t+1t)−Y (t),
where 1Y (t) has a normal distribution with mean 1Λ(t) = Λ(t + 1t) − Λ(t) and variance σ 21Λ(t). If letting
U(t) = t + σW (t) be the Wiener process with drift t and diffusion σ , then

Y (t) = U(Λ(t)) = Λ(t)+ σW (Λ(t)) (1)

is just a time-transformed Wiener process. When the amount of degradation reaches a pre-specified critical level D, failure
occurs. Let T denote the failure time, then T = inf{t : Y (t) ≥ D}. The level-crossing of the cumulative degradation threshold
D by a nonhomogeneousWiener process Y (t) can be obtained in terms of the inverse Gaussian (IG) distribution [12,13,31] as
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TΛ = Λ−1(TIG), where TIG is inverse Gaussian (IG) random variable IG(D,D2/σ 2)with mean D and variance σ 2/D. Note the
similarities between nonhomogeneousWiener process model and hazard rate model. The failure time in hazard rate model
can be obtained by TΛ = Λ−1(Texp)whereΛ is the integrated hazard rate and Texp is the standard exponential distribution.
Detailed nonparametric inference of this model is discussed by [14].
In most degradation applications, there is substantial subject-to-subject variability among the degradation processes of

different individuals. The unit-specific random effects can be incorporated into the process to represent such heterogeneity
in the degradation paths. One such model can be specified by allowing both drift and diffusion of the aboveWiener process
model to be random. Mathematically tractable distribution results if we adopt a model as follows:

Given (ν, σ ), Y (t) = νΛ(t)+ σW (Λ(t)), (2)

w = σ−2 ∼ Gam(r−1, δ), ν|w ∼ N(1, θ/w). (3)

Here,w hasmean δ/r and variance δ/r2 and thusσ 2 has finitemean r/(δ−1) for δ > 1 and finite variance r2/((δ−1)2(δ−2))
for δ > 2. Letting the conditional mean of ν be 1 is for model identification since any constant can be incorporated into
function Λ(t). An alternative parameterization that is often used in such situations is to let r = δ in the distribution of
w. There is no physical meaning for choosing the random effect distributions in (3). The idea of making these choices of
the distributions (3) for random effects is borrowed from Bayesian linear regression [15] for computational convenience.
Semiparametric maximum likelihood method is developed to estimate the unknown parameter (Λ(t), δ, r, θ) of the
underlying process. Here, Λ(t) is estimated nonparametrically, which leads naturally to an infinite dimensional statistical
problem. We show that the maximum likelihood estimator (MLE) is consistent and we also derive the convergence rate of
the MLE. Bootstrap method is used for assessing the uncertainty of the MLE. Simulation results suggest that this method
works well and we apply our method to the degradation data of a civil engineering structure to estimate its reliability.
The remainder of the paper is as follows. Section 2 introduces the Wiener process model with random effects. Section 3

establishes the consistency and convergence rate of themaximum likelihood estimator and uses bootstrapmethod to assess
the uncertainties of the estimators. Section 4 uses EM algorithm to compute theMLE. Section 5 presentsMonte Carlo studies
to validate the methods and we also fit the Wiener process model to bridge beam data in Section 6. Section 7 makes some
concluding remarks.

2. Wiener process with random effects: t process

Model (2) shows that the conditional distribution of Y (t) given w and ν is normal, and the marginal density of Y (t)
follows as

f (y) =
∫
∞

−∞

∫
∞

0
f (y; ν,w)g1(ν; θ,w)g2(w; r, δ)dwdν

=
Γ (δ + 1

2 )
√
2πrΓ (δ)[Λ2θ +Λ]1/2

[
1+

(y−Λ)2

2r(Λ2θ +Λ)

]−δ− 12
. (4)

Note that
√

δ

r(Λ2θ+Λ)
(Y (t)−Λ(t)) has a t distributionwith degrees of freedom 2δ. Thus, Y (t) has finitemeanΛ(t) and finite

variance

Var(Y (t)) = [Λ(t)2θ +Λ(t)]
r

δ − 1
, for δ > 1.

An extreme situation of the above model is when the variances of the random effects are zero and it becomes the general
Wiener process model (1). This situation can be realized by letting θ → 0 and r →∞with δ/r = c fixed. Conditionally on
their common random effects, ν andw, the level-crossing of the cumulative degradation threshold D by the process Y (t) in
(2) follows IG distribution IG(D/ν,D2w). Hence, P(T ≤ t) = Eν,wG(Λ(t); ν,w), where G(t, ν, w) is the inverse Gaussian
distribution function with parameters (D/ν,D2w). If the degradation paths are monotonic, the failure time distribution has
explicit form and is given by

P(T ≤ t) = P(Y (t) > d) = F2δ

[√
δ

r
Λ(t)− d√

θΛ(t)2 +Λ(t)

]
, (5)

where F2δ is the t distribution function with degrees of freedom 2δ.
Suppose that we observe Y (t) for a subject at times t1, . . . , tm, yielding observations Y1, . . . , Ym. Let yj = Yj − Yj−1 and

λj = Λ(tj) − Λ(tj−1) with Y0 = 0 and Λ(t0) = 0. Given the common random effects ν and w, the increments yj are
independently normally distributed. Thus the joint density of the yj can be obtained as

f (y1, . . . , ym) =
∫
∞

−∞

∫
∞

0
φ(y1, . . . , ym; ν,w)g1(ν; θ,w)g2(w; r, δ)dwdν

=
Γ (δ + m

2 )

Γ (δ)(
√
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1
2r
(y− λ)′A−1(y− λ)

]−δ−m2
, (6)
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