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a b s t r a c t

We consider the problem of estimating the regression function in functional linear
regression models by proposing a new type of projection estimators which combine
dimension reduction and thresholding. The introduction of a threshold rule allows us to
get consistency under broad assumptions as well as minimax rates of convergence under
additional regularity hypotheses. We also consider the particular case of Sobolev spaces
generated by the trigonometric basis which permits us to get easily mean squared error
of prediction as well as estimators of the derivatives of the regression function. We prove
that these estimators are minimax and rates of convergence are given for some particular
cases.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Functional data analysis [1,2] is a topic of growing interest in statistics andmany applications in chemometrics [3], finance
[4], biometry or climatology [5] are now dealing with the functional linear model. This model is useful to estimate or predict
a scalar random variable, say Y ∈ R, thanks to a random function denoted by X .We assume in the following that Y and X
are centered random variables and, without loss of generality, that the random function X takes values in L2[0, 1], the space
of square integrable functions defined on [0, 1] endowed with its usual inner product 〈f , g〉 =

∫ 1
0 f (t)g(t)dt and associated

norm ‖f ‖ = 〈f , f 〉1/2, f , g ∈ L2[0, 1]. The functional linear model is then defined by

Y =
∫ 1

0
β(t)X(t)dt + σε, σ > 0, (1.1)

where the function β(t) is called the regression or slope function and the error term ε is supposed to be centered E(ε) = 0
and not correlated with X: ∀ t ∈ [0, 1], E(X(t)ε) = 0.
Assuming that X has a finite second moment, i.e. E‖X‖2 =

∫ 1
0 E|X(t)|2dt < ∞, one can define the covariance operator

of X , say Γ . This operator is defined on L2[0, 1] as follows: for any function f ∈ L2[0, 1],

Γ f (s) =
∫ 1

0
cov(X(t), X(s))f (t) dt, ∀s ∈ [0, 1]. (1.2)
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It is well known (see e.g. [6]) that the regression function β satisfies the following moment equation

g(s) := E[YX(s)] = [Γ β](s), s ∈ [0, 1], (1.3)

where g belongs to L2[0, 1]. Since Γ is a nonnegative nuclear operator [7] a continuous generalized inverse of Γ does not
exist as long as the range of the operator Γ is an infinite dimensional subspace of L2[0, 1]. Consequently inverting Eq. (1.3)
to recover β can be seen as an ill-posed inverse problem. Cardot et al. [8] provide a necessary and sufficient condition for
the existence of a unique solution of Eq. (1.3).

Assumption 1.1. The covariance operator Γ of the random function X is injective and the function g = E[YX] belongs to
the rangeR(Γ ) of Γ .

Under this assumption, the covariance operatorΓ admits a discrete spectral decomposition given by a sequence (λj)j∈N of
strictly positive eigenvalues and a sequence of corresponding orthonormal eigenfunctions {φj}j∈N. Then, the normal equation
(1.3) can be rewritten as follows

β =
∑
j∈N

gj
λj
· φj with gj := 〈g, φj〉, j ∈ N. (1.4)

It is well known that, even in the case of a priori known eigenvalues {λj} and eigenfunctions {φj}, replacing in (1.4) the
unknown function g by a consistent estimator ĝ does in general not lead to a consistent estimator of β . To be more precise,
since the sequence (λj)j∈N tends to zero, E‖̂g − g‖2 = o(1) does generally not imply

∑
j∈N |λj|

−2
· E|〈̂g − g, φj〉|2 = o(1).

Consequently, the estimation in functional linear model is called ill-posed and additional regularity assumptions on the
regression function β are necessary in order to obtain a uniform rate of convergence (cf. [9]).
The objective is to estimate the regression function β, as well as its derivatives, when observing a sample (Yi, Xi) of n

i.i.d. realizations of (Y , X). We can define the empirical estimators of g and Γ respectively as follows

ĝ :=
1
n

n∑
i=1

YiXi and Γ̂ :=
1
n

n∑
i=1

〈Xi, ·〉Xi. (1.5)

Themain class of estimation procedures studied in the statistical literature are based on principal components regression
and consist in reducing the dimension by inverting Eq. (1.3) in the finite dimension space generated by the eigenfunctions
of Γ̂ associated to the largest eigenvalues (see e.g. [10,3,6,11] or [12] in the context of generalized linear models).
The second important class of estimators relies on minimizing a penalized least squares criterion which can be seen

as a generalization of the ridge regression. Marx and Eilers [13], and Cardot et al. [8] proposed B-splines expansion of
the regression function with a penalty dealing with the squared norm of a fixed order derivative of the estimators. More
recently Crambes et al. [14] proposed a spline smoothing decomposition with the same type of penalty and proved the
optimality of their estimators according to a criterion that can be interpreted as a squared error of prediction. Note that this
question has given rise recently to numerous publications in the machine learning community with similar ideas based on
reproducing kernel Hilbert spaces (RKHS) and Tikhonov regularization (see e.g. [15,16] and the references therein).
Borrowing ideas from the inverse problems community [17,18] we propose in this article a new class of estimatorswhich

rely on dimension reduction by projecting the data onto some basis of orthonormal functions and threshold techniques that
allow us to control the accuracy of the estimator. More precisely, let us consider a set of orthonormal functions such as
wavelet or trigonometric basis denoted by {ψ1, . . . , ψm, . . .} which forms a basis of L2[0, 1]. Given a dimension m ≥ 1,
we denote by [Γ̂ ]m the m × m matrix with generic elements 〈Γ̂ψ`, ψj〉, j, ` = 1, . . . ,m and by [̂g]m the m vector with
elements 〈̂g, ψ`〉, ` = 1, . . . ,m. We can first remark, that the least squares estimator of β obtained with the projections of
the Xi onto Ψm, the subspace of L2[0, 1] spanned by the functions {ψ1, . . . , ψm}, is simply given, when [Γ̂ ]m is nonsingular,
by ([Γ̂ ]−1m [̂g]m)

t
[ψ]m(·)where [ψ]m(·) = (ψ1(·), . . . , ψm(·))t. Our estimator, in its simplest form, consists in thresholding

this projection estimator when, roughly speaking, the norm of the inverse of the matrix [Γ̂ ]m is too large. More precisely,
introducing a threshold value γ which will depend onm and nwe propose to estimate β as follows

β̂(t) =
m∑
`=1

β̂` · 1{‖[Γ̂ ]−1m ‖ ≤ γ } · ψ`(t), t ∈ [0, 1], (1.6)

where the β̂` are the generic elements of the vector of coordinates obtained by least squares projection and 1 is the indicator
function. This new thresholding step can be seen as an improvement of the estimator proposed by Ramsay and Dalzell [19]
which was built by projecting the data onto finite dimensional basis of functions. From an inverse problem perspective this
approach is similar to the linear Galerkin procedure [20] or [9] defined as follows, βm ∈ Ψm denotes a Galerkin solution of
the operator equation g = Γ β when

‖g − Γ βm‖ 6 ‖g − Γ β̃‖, ∀β̃ ∈ Ψm. (1.7)
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