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a b s t r a c t

Pair-copula constructions (PCCs) offer great flexibility in modeling multivariate depen-
dence. For inference purposes, however, conditional pair-copulas are often assumed to de-
pend on the conditioning variables only indirectly through the conditional margins. The
authors show here that this assumption can be misleading. To assess its validity in trivari-
ate PCCs, they propose a visual tool based on a local likelihood estimator of the conditional
copula parameter which does not rely on the simplifying assumption. They establish the
consistency of the estimator and assess its performance in finite samples via Monte Carlo
simulations. They also provide a real data application.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Over the past two decades, dependence modeling via copulas has evolved considerably and has found applications
in areas as diverse as actuarial science, biostatistics, finance, hydrology, and machine learning. In the bivariate case,
many parametric copula families have been proposed that can represent a broad range of dependence patterns. In higher
dimensions, however, parametric copula families are harder to construct and their tractability often comes at the cost of
flexibility. For example, meta-elliptical copulas are somewhat of a straightjacket, if only because all lower-dimensional
margins belong to the same class. In many applications, this property is too restrictive as pairs of variables may exhibit very
different dependence patterns.

A more flexible way to model multivariate dependences is offered by pair-copula constructions (PCCs), also known as
vine copulas [7,15,16]. Vines are graphical models that provide a systematic way to decompose a multivariate copula into
a cascade of bivariate copulas, some of which are conditional. A simple example of a PCC in the trivariate case consists of
writing the joint density c of a random vector (U1,U2,U3) with uniform margins on (0, 1) in the form

c(u1, u2, u3) = c12(u1, u2)c23(u2, u3)c13|2(u1|2, u3|2; u2). (1)

Here, c12 and c23 are the copula densities of the pairs (U1,U2) and (U2,U3), respectively. Furthermore, c13|2 is the conditional
copula density of the pair (U1,U3) given U2 = u2, evaluated at uk|2 = Pr(Uk ≤ uk|U2 = u2) for k = 1, 3. Any choice of c12,
c13 and c13|2 leads to a valid trivariate copula density. More generally, using different bivariate copulas as building blocks in
a d-variate PCC, one can construct highly flexible multivariate copula models.

Inference for a given PCC is typically carried out by specifying a parametric copula for each building block. Copula
parameters are then estimated sequentially starting with the unconditional pair-copulas and moving up the hierarchy [1].
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In the above example, this amounts to estimating the parameters of c12 and c23 first, and those of c13|2 in the second step. A
standard assumption is that the conditional pair-copulas of the PCC depend on the conditioning variable(s) only through the
conditional margins. In (1), this is equivalent to assuming that the conditional copula c13|2 of the pair (U1,U3) given U2 = u2
is the same for all values of u2 ∈ (0, 1).

This simplifying assumption seems to have been made mainly for convenience at a time when inference tools for
conditional copulas were still under development [20]. Through examples, it is shown in [14] that simplified PCCs can
provide a good approximation in some cases. This paper revisits this issue and introduces a nonparametric smoothing
methodology that relaxes this simplifying assumption for trivariate PCCs.

After a brief summary of vine copula constructions in the trivariate case in Section 2, estimation for simplified three-
dimensional PCCs is described in Section 3. Through simulations, it is then shown in Section 4 that inference based
on simplified PCCs can be misleading and may even conduce the belief that some pairs of variables are conditionally
independent when in fact they are not. The newmethodology, which derives from recent work [4], is described in Section 5.
This approach is seen to perform well in simulations and in a data application, as detailed in Sections 6 and 8, respectively.
The consistency of the proposed method is presented in Section 7 and Section 9 concludes with a short discussion.

The following notation is used throughout the paper. Vectors in R3 are denoted by bold letters, e.g., x = (x1, x2, x3) ∈ R3.
If A ⊂ {1, 2, 3} is non-empty, xA stands for an |A|-dimensional vector with components xk, k ∈ A. If X is a random vector
with distribution function F and density f , then for arbitrary disjoint index sets A and B, the symbols FA|B and fA|B denote the
conditional distribution function and density of XA given XB = xB, respectively.

2. Trivariate PCCs

Let X1, X2, X3 be random variables with joint distribution function F and continuous margins F1, F2, F3, respectively.
Sklar’s Representation Theorem [22] states that, for all x1, x2, x3 ∈ R,

F(x1, x2, x3) = C{F1(x1), F2(x2), F3(x3)},

where C is a copula, i.e., a distribution function with margins that are uniform on (0, 1). If F is absolutely continuous, its
density can be written in terms of the density c of C as

f (x1, x2, x3) = c{F1(x1), F2(x2), F3(x3)}
3

k=1

fk(xk),

where, for each k ∈ {1, 2, 3}, fk is the density of Fk.
A PCC is based on the fact that f can be decomposed as

f (x1, x2, x3) = f3(x3) × f2|3(x2|x3) × f1|23(x1|x2, x3). (2)

Note that this factorization is unique up to relabeling. For any index set A ⊂ {1, 2, 3} and k ∈ A, let A − k = A \ {k}. Using
Sklar’s Representation Theorem, one can then write, for arbitrary j ∉ A,

fj|A = cjk|A−k(Fj|A−k, Fk|A−k)fj|A−k. (3)

Repeated applications of relation (3) in (2) make it possible to express f as

f (x1, x2, x3) = f1(x1)f2(x2)f3(x3) × c12{F1(x1), F2(x2)} × c23{F2(x2), F3(x3)}
× c13|2{F1|2(x1|x2), F3|2(x3|x2); x2}, (4)

which reduces to (1) if the margins of F are uniform. The univariate conditional distributions featuring in (4) are given by

Fj|k(xj|xk) = hjk{Fj(xj), Fk(xk)},

where, for all u, v ∈ (0, 1),

hjk(u, v) =
∂

∂v
Cjk(u, v). (5)

3. Inference for simplified PCCs

Now suppose the density f of (X1, X2, X3) follows a simplified PCC model, i.e., f is of the form (4), where the conditional
copula density c13|2 does not depend on the conditioning variable. The last term in (4) thus reduces to

c13|2{F1|2(x1|x2), F3|2(x3|x2)}.

To ease the presentation, assume that all copulas appearing in (4) are parametrized by scalar parameters θ12, θ23, θ13|2 that
are indexed in the same way as the corresponding copula.
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