
Journal of Multivariate Analysis 110 (2012) 106–120

Contents lists available at SciVerse ScienceDirect

Journal of Multivariate Analysis

journal homepage: www.elsevier.com/locate/jmva

In mixed company: Bayesian inference for bivariate conditional copula
models with discrete and continuous outcomes
V. Radu Craiu ∗, Avideh Sabeti
Department of Statistics, University of Toronto, 100 St George Street, Toronto, Ontario M5S 3G3, Canada

a r t i c l e i n f o

Article history:
Available online 2 April 2012

AMS subject classifications:
62H05
62F15
62C40

Keywords:
Adaptive Markov chain Monte Carlo
Bayesian inference
Conditional copula model
Cubic spline
Deviance information criterion
Mixed outcomes

a b s t r a c t

Conditional copula models are flexible tools for modelling complex dependence structures
in regression settings. We construct Bayesian inference for the conditional copula model
adapted to regression settings in which the bivariate outcome is continuous or mixed.
The dependence between the copula parameter and the covariate is modelled using cubic
splines. The proposed joint Bayesian inference is carried out using adaptive Markov chain
Monte Carlo sampling. The deviance information criterion (DIC) is used for selecting the
copula family that best approximates the data and for choosing the calibration function.
The performances of the estimation and model selection methods are investigated using
simulations.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Central to modern statistical analysis is modelling and understanding the dependence between random variables.
However, the number of options at the statistician’s disposal is limited due to the sparsity of available multivariate
distributions. Copulas represent a flexible alternative in which one can bypass the use of multivariate distributions by using
Sklar’s theorem [48] to model separately the marginal distributions and the joint dependence structure.

In this paper we consider the bivariate case, as the extension to more than two responses requires a considerably
more complex statistical machinery. Let Y1 and Y2 be continuous random variables of interest with joint distribution
function H and marginal distributions F1 and F2, respectively. Sklar’s theorem ensures the existence of a unique copula
C : [0, 1]2 → [0, 1], which satisfies H(y1, y2) = C{F1(y1), F2(y2)}, for all (y1, y2) ∈ R2. Often, the function C assumes
a parametric form indexed by a copula parameter θ . A nice introduction to copulas and their properties is [38] and the
connections between various copulas and dependence concepts are discussed in detail in [31].

It should be noted that copula models have been mostly used for dependence between continuous random variables
(e.g., [9,10,14,17,28,46,59]) but there is growing interest in the study and applications of copula models for mixed (discrete
and continuous) data [21,13,42,52,53,55]. Recent work by [21,49] has shown that extra care is needed in performing and
interpreting statistical inference for copula models when some of the marginals are discrete.

While frequentist methods have been used predominantly in the copula literature (see, for instance, [20,22]), the
availability of powerful computers and ‘‘off-the-shelf’’ algorithms have recently led to a few Bayesian methods for copula
estimation, model selection and goodness-of-fit (see, for instance, [29,34,37,42,47,49]).

A natural extension of the classical copula model allows the copula parameter to vary with covariate values as in [35].
This idea, formalized by the conditional copula model of [40], allows for realistic copula modelling in regression settings
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[3,23]. For instance, if, in addition to Y1 and Y2, we have information on a covariate X , then the influence of X on the
dependence between Y1 and Y2 can be modelled by the conditional copula C(· | X), which is the joint distribution function
of U1 ≡ F1|X (Y1 | x) and U2 ≡ F2|X (Y2 | x) given X = x, where Yi | X = x has cdf Fi|X (· | x), i = 1, 2. For each x in the support
of X , it was showed in [40] that for continuous random variables the joint conditional distribution is uniquely defined by

HX (y1, y2 | x) = C{F1|X (y1 | x), F2|X (y2 | x) | x}, for all (y1, y2) ∈ R2.

In general, it is not known how the copula parameter varies with the covariate X . Moreover, visualizing the dependence
patterns in the data is not possible as the available samples are not identically distributed (usually there is no replication
at a given value of X). Therefore, one needs to use flexible methods to model the calibration function that characterizes the
relationship between the copula parameter and the covariates. This naturally leads to the use of semiparametric [3] and
nonparametric inferential tools [39,58] in the case of continuous marginals. Conditional copulas have been used mostly in
the context of financial time series [5,32,40,41] but have recently been used in classical regression models too [3].

In this paperwepropose joint Bayesian inference for a conditional copulamodel inwhich of interest, besides themarginal
models, is the dependence between the outcomes. Our approach can handle the case of continuous and mixed (binary
and continuous) outcomes. The Bayesian approach proposed here offers a number of advantages. First, it is a principled
method to produce full likelihood-based inference as recommended by [21,49] in the case of copula models with some
of the margins discrete. Second, the Bayesian approach offers a natural solution to the ‘‘propagation of errors’’ challenge
in which the variance of the marginal model estimators must be accounted for when assessing the variance of the copula
estimators. Within the Bayesian paradigm, the posterior distribution gives a full representation of the uncertainty in the
whole data and prior. An added bonus is that the simultaneous estimation of both marginal distributions’ parameters and
copula parameters results in better understanding of the parameter dependences and leads to better performance of model
selection criteria, as discussed in [47].

The shape of the calibration function is difficult tomodel in general andwe thus need to use flexiblemodels to capture its
structure. In this paper we consider a Bayesian cubic spline model in which the choice for the position of the knots is data-
driven. Sampling from the posterior distribution is performed using an adaptive MCMC algorithm following the principles
developed in [26]. For more details regarding the theory and implementation of adaptive MCMC, we refer to [11,25,43].

In the next sectionwe detail the statistical model alongwith the prior specification. Section 3 contains the computational
algorithm used to sample from the posterior and the criterion used formodel selection. The simulation study is summarized
in Section 4. The paper closes with a discussion in which future directions are outlined.

2. The model

In this section we describe the conditional copula model for the dependent outcome data. We separate the model
formulations used for continuous and for mixed outcomes (binary and continuous), as the two situations require different
computational algorithms to sample from the posterior distribution and the resulting estimators exhibit different efficiency.

2.1. Continuous outcomes case

The data consist of bivariate continuous random variables (V1, V2) and covariate X measured for n samples. Marginally,
Vi and X are related through Vi ∼ N (Xβi, σ

2
i ), for i = 1, 2. The conditional dependence between V1 and V2 is defined via a

conditional copula model with joint density

f (V1, V2|X) =
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where c(a,b)(u, v|θ) = ∂a+bC(u, v|θ)/∂ua∂vb, for all 0 ≤ a, b ≤ 1.

An important part of the model is the specification of θ(X). In this paper we assume that X ∈ R and follow [3,4] by
assuming that g(θ) = η(X) where g is a known function that maps the support of the copula parameter onto the real line
and η : R → R is the unknown calibration functionwewant to estimate.We adopt the flexible cubic splinemodel suggested
by [50] in which

η(z) =

3
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αjz j +
K

k=1

ψk(z − γk)
3
+
, (1)

where a+ = max(0, a). It is well known that the performance of spline-based estimators are influenced by the location of
the knots γ1, . . . , γK . In our model this choice is automatic and data-driven.

2.2. Mixed outcomes case

In the mixed outcome case, the response consist of one binary and one continuous random variable, denoted Q and W ,
respectively. We are interested in statistical inference for the marginal logistic and linear regression models but also the
estimation of the calibration function.
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