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a b s t r a c t

In competing risks studies, the Kaplan–Meier estimators of the distribution functions (DFs)
of lifetimes and the corresponding estimators of cumulative incidence functions (CIFs) are
used widely when no prior information is available for these distributions. In some cases
better estimators of the DFs of lifetimes are available when they obey some inequality
constraints, e.g., if two lifetimes are stochastically or uniformly stochastically ordered,
or some functional of a DF obeys an inequality in an empirical likelihood estimation
procedure. If the restricted estimator of a lifetime differs from the unrestricted one, then
the usual estimators of the CIFs will not add up to the lifetime estimator. In this paper
we show how to estimate the CIFs in this case. These estimators are shown to be strongly
uniformly consistent. In all cases we consider, when the inequality constraints are strict
the asymptotic properties of the restricted and the unrestricted estimators are the same,
thus providing the asymptotic properties of the restricted estimators essentially ‘‘free of
charge’’. We give an example to illustrate our procedure.

Published by Elsevier Inc.

1. Introduction

Consider a competing risks study with k populations. For the ith population, let Ti denote the lifetime, assumed
continuous, Fi its distribution function (DF), Si = 1 − Fi its survival function (SF), and let δi ∈ {0, 1, 2, . . . , ri} denote the
cause of failure or death, where {δi = 0} denotes a censored event. The cumulative incidence function (CIF) of failure due
to cause j in the ith population is defined by Fij(t) = P[Ti ≤ t, δi = j] for 1 ≤ j ≤ ri, 1 ≤ i ≤ k. Clearly,

∑
j Fij = Fi for all i.

When no prior information is available, the Kaplan–Meier estimators (KMEs) of the DFs and the corresponding estimators
of the CIFs are widely used (see [9]). In some cases, utilization of prior information provide better estimators of the DFs.
One class of such estimators are provided when the DFs obey some order restriction. Consider the following sequence
of four well known order restrictions on T1 and T2. We define T1 to be larger than T2 in stochastic precedence ordering,
T1≥spo T2, if P(T1 ≥ T2) ≥ 1/2. We define T1 to be stochastically larger than T2, T1≥so T2, if F1 ≤ F2. We define T1 to
be larger than T2 in uniform stochastic ordering, T1≥uso T2, if S2/S1 is nonincreasing. If F1 and F2 have densities f1 and f2,
respectively, then T1 is said to be larger than T2 in likelihood ratio ordering, T1≥lro T2, if f1/f2 is nondecreasing. The following
strict implications hold for the four order restrictions:

LRO H⇒ USO H⇒ SO H⇒ SPO.
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Even in the 1-sample case, the empirical likelihood estimator introduced by Owen (see [11]) can be used to improve upon
the KM estimator if some functional of the DF is known to obey some inequality, e.g., if the mean is known to be less than
or equal to some µ0.
If the KME and the improved estimator of Fi are denoted by F̂i and F∗i , respectively, the usual estimators, F̂ijs of the Fijs will

not addup to F∗i unless they are the same, requiring these estimators to be adjusted. Themethodof adjustment is not obvious.
For example,multiplying F̂ij by F∗i /F̂imight seem appealing, but itmight destroy themonotonicity of the estimators. Since F

∗

i

is obtained by moving the masses of F̂i to satisfy the constraints, and since the mass at a point corresponds to failure due to
one cause only, our procedure simplymakes the correspondingmovement of themass for the CIF corresponding to that par-
ticular cause; details are provided in Section 2. It should be noted that the adjustment of F̂ij depends only on F̂i and F∗i , i.e., the
adjustment of F̂ij does not depend on F∗l for any l 6= i. Hence, the same procedure is applicable to any improvements of F̂is.
All of the orderings mentioned above are transitive. However, the restricted estimators of the DFs and their properties

have been investigated in the literature for the 2-sample case only, except for the stochastic ordering case where the
extension to the k-sample case has been thoroughly investigated by El Barmi and Mukerjee [4], hereafter referred to as
EBM [4]. In this paper we consider the problem of estimation of the CIFs when k life distributions are stochastically ordered,

F1 ≤ F2 ≤ · · · ≤ Fk. (1)

It is shown that if the inequality constraints are strict, then the restricted and the unrestricted estimators have the same
asymptotic distributions. Thus, the asymptotic inference procedures remain unchanged while we get the improvements
in small samples by the use of order restriction ‘‘free of charge’’. In Section 2 we consider the 2-sample case for ease of
exposition. In Section 3 we show that the k-sample case is an easy extension of the 2-sample case. In Section 4 we illustrate
our methods with a real life example. In Section 5 we make some concluding remarks.
Throughout, we use the left-continuous inverse of F , the DF of a lifetime, given by

F−1(p) = inf{t ≥ 0 : F(t) ≥ p}, 0 ≤ p ≤ 1, where F−1(1)may be∞. (2)

We also use the notation

‖f ‖ba for sup
a≤t≤b
|f (t)| for any function f .

The subscripts i and ijwill always stand for the ith population and jth CIF of the ith population, respectively.

2. The 2-sample case

For i = 1, 2, let Ti have a continuous DF, Fi, that has a density, fi, and SF, Si = 1− Fi, subject to ri competing risks, along
with a possible random right censoring. We identify the risks of failure in the ith population by δi = 0, 1, . . . , ri, where
{δi = 0} is the event that an observation has been censored. We assume that F1 ≤ F2.

2.1. The estimators

Let {Til : 1 ≤ l ≤ ni, i = 1, 2} be independent random samples from the two populations, and let Cil, with a continuous
DF, Gi, denote the censoring time of the lth subject in the ith population. We observe (Lil, δil), where Lil = Til ∧ Cil and δil is
the cause of failure. We assume that {Cil, Til : 1 ≤ l ≤ ni, i = 1, 2} are independent. Let πi be the survival function of Lil.
Then πi = SiḠi from our independence assumption, where Ḡi = 1− Gi. We assume that all observation points are distinct
since it occurs with probability 1.
To avoid proliferation of subscripts and possible confusion, we suppress the sample size dependence of the estimators.
The KMEs of the Fis are given by

F̂i(t) = 1− Ŝi(t) = 1−
∏
{l:Li:l≤t}

(
1−

1
ni − l+ 1

)δi:l
, t ≥ 0, i = 1, 2, (3)

where {Li:l} are the order statistics from {Lil} and δi:ls are the corresponding values of δ. Following the usual practice, we
consider the last observation to be uncensored in order to define the estimators for all t .
Estimation of DFs under stochastic ordering has a long history. The nonparametric likelihood estimators (NPMLEs) in

the 2-sample uncensored case were found by Brunk et al. [1]. In the censoring case, Dykstra [2] derived the NPMLEs in
the 2-sample case. This was extended to the k-sample case by Feltz and Dykstra [5] who provided an iterative algorithm
that converges to the NPMLEs. The asymptotic distributions in the 2-sample case were derived by Præstgaard and Huang
[12]. These are very complicated and difficult to use for further analyses. Hogg [8] had suggested an alternative procedure
that simply uses the least squares estimators of F1(t) and F2(t) at each t , subject to the constraint, F1(t) ≤ F2(t), the so-
called isotonic regression of the unrestricted estimators of F1(t) and F2(t); see the monograph by Robertson et al. [13] for
properties of isotonic regression. Unpublished simulations by El Barmi et al. [3] show that Hogg’s [8] estimators appear to
have smaller MSE than the NPMLEs at almost all quantiles for almost all distributions they have considered. In the 2-sample
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