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a b s t r a c t

Stochastic modeling for large-scale datasets usually involves a varying-dimensional model
space. This paper investigates the asymptotic properties, when the number of parameters
grows with the available sample size, of the minimum-BD estimators and classifiers under
a broad and important class of Bregman divergence (BD), which encompasses nearly all
of the commonly used loss functions in the regression analysis, classification procedures
andmachine learning literature. Unlike the maximum likelihood estimators which require
the joint likelihood of observations, the minimum-BD estimators are useful for a range of
models where the joint likelihood is unavailable or incomplete. Statistical inference tools
developed for the class of large dimensionalminimum-BDestimators and related classifiers
are evaluated via simulation studies, and are illustrated by analysis of a real dataset.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

In many fields of applications, the dimension (number) p of model space (parameters) depends on the sample size n.
Examples include the X-ray crystallography [1,2] and the autoregressive models in times series. In the literature, Drost [3]
developed the goodness-of-fit tests for location-scale models when the number of classes tends to infinity; Murphy [4]
developed testing for a time dependent coefficient in Cox’s regression model. This paper is motivated from issues in two
important and challenging applications.

1.1. fMRI time series: a diverging number of parameters

Functional magnetic resonance imaging (fMRI) is a recent and exciting method that allows investigators to determine
which areas of the brain are involved in a cognitive task. Following Ward [5] and Worsley et al. [6], a single-voxel fMRI
time-series {s(ti), y(ti)}ni=1, for a given scan and a given subject, can be captured by the convolution model

y(t) = d(t)+ s ∗ h(t)+ ε(t), t = t1, . . . , tn, (1.1)

where ∗ denotes the convolution operator, y(t) is the measured noisy fMRI signal, s(t) is the external input stimulus (which
could be fromadesign either block- or event-related andwhere s(t) = 1or 0 indicates the presence or absence of a stimulus),
h(t) is the hemodynamic response function (HRF) at time t after neural activity, d(t) is a slowly drifting baseline, and the
errors ε(ti) are zero-mean and temporally autocorrelated. Similar models can be found in [7]. Refer to [8] and references
therein for a recent review of statistical issues and methods in fMRI data analysis.
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Fig. 1. An illustrative plot of HRF h(tj)with n = 80.

Of primary interest to neuroscientists is the estimation and hypothesis testing of the underlying HRF. Typically, the peak
value of the HRF h(·) is reached after a short delay of the stimulus and drops quickly to zero. A typical example of h(·), given
in [9], is plotted in Fig. 1. Clearly, the region {t : h(t) 6= 0} is sparse in its temporal domain. Thus, to obtain statistically
more efficient estimates of the HRF associated with event-related fMRI experiments, the sparsity of the HRF needs to be
taken into account. We thus suppose that h(t) = 0 for t > tpn and focus on estimating the first pn values of h(ti), where
pn is less than n, the length of the fMRI time series. In neuroimaging studies, the temporal drift d(·) is a nuisance function
and usually approximated by a (at most third order) polynomial; see for example, the popular imaging analysis tool AFNI at
http://afni.nimh.nih.gov/afni/ [10,6]. As such, (1.1) is re-expressed as

y = T̃̃α+ Sh+ ε, (1.2)

where y = (y(t1), . . . , y(tn))T ,

T̃ =

1 t1 t21 t31
...

...
...

...

1 tn t2n t3n

 , S =



s(0) 0 · · · 0
s(t2 − t1) s(0) · · · 0

...
...

. . .
...

s(tpn − t1) s(tpn − t2) · · · s(0)
...

... · · ·
...

s(tn − t1) s(tn − t2) · · · s(tn − tpn)


is the n × pn Toeplitz matrix, ε = (ε(t1), . . . , ε(tn))T , and α̃ = (α0, α1, α2, α3)

T and h = (h(t1), . . . , h(tpn))
T are both

vectors of unknown parameters.
Clearly, pn here grows with n but is excessively below n. For the regression problem (1.2), the large-dimensional vector

h can be estimated via weighted least-squares using the quadratic loss. In practice, however, pn, termed the ‘‘intrinsic
dimensionality of fMRI data’’ [11], is unknown for real fMRI data. Indeed, as far as we know, all published work for fMRI
assumes that pn = p is a known fixed number, followed by traditional parametric inference based on asymptotic derivations
of fixed-dimensional estimators. To reduce modeling biases due partly to the fixed choice of p, statistical inference based on
asymptotic results which allow the dimension pn to depend on n is desired. This motivates us to consider a more realistic
relation between pn and n,

dimension : pn varies with n or even pn →∞ at a certain rate as n→∞. (1.3)

1.2. Statistical learning: regression and classification under general loss

In statistical learning, the primary goals of regression and classification seem to be kept separate. Regression methods
concern the ‘‘orderable’’ output variable and aim to estimate the regression function at points of the input variable, whereas
the primary interest of classification rules for the ‘‘categorical’’ output variable is to forecast the most likely class label for
the output.
As discussed in [12], both regression and classification can be viewed from the common perspective of real valued

prediction. Namely, the goal of a supervised learning algorithm is to use the training samples to construct a prediction
rule for a future output at the observed value of the input variable. Depending on the nature of the output variable, the
predictive error is quantified by different errormeasures. For example, the quadratic loss function, as utilized in the previous
brain fMRI data, has nice analytical properties and is usually used in regression analysis. However, the quadratic loss is not
always adequate in classification problems where the misclassification loss, deviance loss (or the negative log-likelihood)
and exponential loss are more realistic and commonly used in classification.
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