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a b s t r a c t

We propose a class of robust estimates for multivariate linear models. Based on the
approach of MM-estimation (Yohai 1987, [24]), we estimate the regression coefficients
and the covariance matrix of the errors simultaneously. These estimates have both a
high breakdown point and high asymptotic efficiency under Gaussian errors. We prove
consistency and asymptotic normality assuming errors with an elliptical distribution.
We describe an iterative algorithm for the numerical calculation of these estimates. The
advantages of the proposed estimates over their competitors are demonstrated through
both simulated and real data.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Consider a multivariate linear model (MLM) with random predictors, i.e., we observe n independent identically
distributed (i.i.d.) (p + q)-dimensional vectors, zi = (y′

i, x
′

i) with 1 ≤ i ≤ n, where yi = (yi1, . . . , yiq)′ ∈ Rq, xi =

(xi1, . . . , xip)′ ∈ Rp, and ′ denotes the transpose. The yi are the response vectors and the xi are the predictors, and both
satisfy the equation

yi = B′

0xi + ui 1 ≤ i ≤ n, (1.1)

where B0 ∈ Rp×q is the matrix of the regression parameters and ui is a q-dimensional vector independent of xi. If xip = 1
for all 1 ≤ i ≤ n, we obtain a regression model with intercept.

We denote the distributions of xi and ui by G0 and F0, respectively, and 60 is the covariance matrix of the ui. The
p-multivariate normal distribution with mean vector µ and covariance matrix 6 is denoted by Np(µ,6).

In the case of ui with distribution Nq(0,60), the maximum likelihood estimate (MLE) of B0 is the least squares estimate
(LSE), and the MLE of 60 is the sample covariance matrix of the residuals. It is known that these estimates are not robust: a
small fraction of outliers may have a large effect on their values.

Several approaches have been proposed to deal with this problem. The first proposal of a robust estimate for the MLM
was given by Koenker and Portnoy [13]. They proposed to apply a regression M-estimator, based on a convex loss function,
to each coordinate of the response vector. The problemswith this estimate is lack of affine equivariance and zero breakdown
point. Several other estimates without these problems were defined later. Rousseeuw et al. [20] proposed estimates for the
MLMbased on a robust estimate of the covariancematrix of z = (x′, y′). Bilodeau andDuchesne [4] extended the S-estimates
introduced by Davies [6] for multivariate location and scatter; then Van Aelst and Willems [23] studied the robustness of
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these estimators. Agulló et al. [1] extended the minimum covariance determinant estimate introduced by Rousseeuw [19]
and Roelandt et al. [18] extended the definition of GS-estimates introduced by Croux et al. [5]. These estimates have a
high breakdown point but are not highly efficient when the errors are Gaussian and q is small. In order to solve this,
Agulló et al. [1] improved the efficiency of their estimates, maintaining their high breakdown point, by considering one-
step reweighting and one-step Newton–Raphson GM-estimates. García Ben et al. [7] extended τ -estimates for multivariate
regression, obtaining a estimate with high breakdown point and a high Gaussian efficiency. Another important approach to
obtain robust and efficient estimates is constrainedM (CM) estimation, proposed byMendes and Tyler in [17] for regression
and by Kent and Tyler in [12] for multivariate location and scatter. The bias of CM-estimates for regression was studied by
Berrendero et al. in [3]. Following this approach, Bai et al. in [2] proposed CM-estimates for the multivariate linear model.

In this paper, we propose robust estimates for the linear model based on the MM approach, first proposed by Yohai [24]
for the univariate linear model, and later by Lopuhaä [15], Tatsuoka and Tyler [22], and Salibián-Barrera et al. [21] for
multivariate location and scatter.We show that our estimates have both a high breakdown point and high normal efficiency.

In Section 2, we define MM-estimates for the MLM and prove some properties. In Sections 3 and 4, we study their
breakdown point and influence function. In Sections 5 and 6, we study the asymptotic properties (consistency and
asymptotic normality) of theMM-estimates assuming randompredictors and errorswith an elliptical unimodal distribution.
In Section 7, we describe a computing algorithm based on an iterative weighted MLE. In Section 8, we present the results of
a simulation study, and we present a real example in Section 9. All the proofs can be found in [14].

2. Definition and properties

Before defining our class of robust estimates for the MLM, we will define a robust estimate of scale.

Definition 1. Given a sample of size n, v = (v1, . . . , vn), an M-estimate of scale s(v) is defined as the value of s that is
solution of

1
n

n−
i=1

ρ0

vi
s


= b, (2.1)

where b ∈ (0, 1), or s = 0 if ♯(vi = 0) ≥ n(1 − b), where ♯ is the symbol for cardinality.

In this paper, we use b = 0.5, which ensures the maximal asymptotic breakdown point (see [10]).
The function ρ0 should satisfy the following definition.

Definition 2. A ρ-function will denote a function ρ(u) which is a continuous nondecreasing function of |u| such that
ρ(0) = 0, supu ρ(u) = 1, and ρ(u) is increasing for nonnegative u such that ρ(u) < 1.

Note that according to the terminology of Maronna et al. [16] this would be a ‘‘bounded ρ-function’’. A popular ρ-function
is the bisquare function:

ρB(u) = 1 − (1 − u2)3I(|u| ≤ 1), (2.2)

where I(·) is the indicator function.

Definition 3. Given a vector u and a positive definite matrix V, the Mahalanobis norm of u with respect to V is defined as

d(u,V) = (u′V−1u)1/2.

For particular givenB ∈ Rp×q and6 ∈ Rq×q, we denote by di(B,6) (i = 1, . . . , n) theMahalanobis norms of the residuals
with respect to the matrix 6; that is,

di(B,6) = (ui(B)′6−1ui(B))1/2,

withui(B) = yi − B′xi.

Using the concepts defined above, we can describe anMM-estimate for the MLM by the following procedure.
Let (Bn,6n) be an initial estimate of (B0,60), with a high breakdown point and such that |6n| = 1, where |6n| is the

determinant of6n. Compute the Mahalanobis norms of the residuals using (Bn,6n),

di(Bn,6n) = (u′

i(
Bn)6−1

n ui(Bn))
1/2 1 ≤ i ≤ n. (2.3)

Then, compute the M-estimate of scale σ̂n := s(d(Bn,6n)) of the above norms, defined by (2.1), using the function ρ0 as
specified in Definition 2 and b = 0.5.

Let ρ1 be another ρ-function such that

ρ1 ≤ ρ0, (2.4)
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