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a b s t r a c t

We investigate the estimation problem of parameters in a two-sample semiparametric
model. Specifically, let X1, . . . , Xn be a sample from a populationwith distribution function
G and density function g . Independent of the Xi’s, let Z1, . . . , Zm be another random sample
with distribution function H and density function h(x) = exp[α + r(x)β]g(x), where
α and β are unknown parameters of interest and g is an unknown density. This model
has wide applications in logistic discriminant analysis, case-control studies, and analysis
of receiver operating characteristic curves. Furthermore, it can be considered as a biased
sampling model with weight function depending on unknown parameters. In this paper,
we construct minimum Hellinger distance estimators of α and β . The proposed estimators
are chosen to minimize the Hellinger distance between a semiparametric model and
a nonparametric density estimator. Theoretical properties such as the existence, strong
consistency and asymptotic normality are investigated. Robustness of proposed estimators
is also examined using a Monte Carlo study.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Semiparametricmodels have continued to receive increasing attention over the years from both practical and theoretical
point of views due in large part to the fact that semiparametric models arise frequently in many areas, primarily in
biostatistics and econometrics. The well-known semiparametric models include the Cox proportional hazard model in
survival analysis, econometric index models, regression models and errors-in-variables models, among many others. More
examples and theory on semiparametric models can be found in the monographs [1,2] and in the review articles [3,4].
In this paper, we consider the following two-sample semiparametric model: Let X1, . . . , Xn be a random sample from a

population with distribution function G and density function g . Independent of the Xi’s, let Z1, . . . , Zm be another random
sample from a population with distribution function H and density function h. The two unknown density functions g and h
are linked by an ‘‘exponential tilt’’ exp[α + r(x)β]. Thus, we have

X1, . . . , Xn
i.i.d.
∼ g(x)

Z1, . . . , Zm
i.i.d.
∼ g(x) exp[α + r(x)β],

(1.1)

where r(x) = (r1(x), . . . , rp(x)) is a 1 × p vector of functions of x, β = (β1, . . . , βp)
T is a p × 1 parameter vector, and α

is a normalizing parameter that makes g(x) exp[α + r(x)β] integrate to 1. Various choices of r(x) for some conventional
distributions are discussed in [5]. In most applications r(x) = x or r(x) = (x, x2). Note also that the test of equality of G
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and H can be regarded as a special case of model (1.1) with α = β = 0. We are interested in the estimation problem of
parameters α and β when g is unknown (nuisance parameter).
For r(x) = x, model (1.1) encompasses many common distributions, including two exponential distributions with

different means and two normal distributions with common variance but different means. Furthermore, model (1.1) with
r(x) = x or r(x) = (x, x2) has wide applications in the logistic discriminant analysis [6,7] and in case-control studies [5,8].
Model (1.1) can also be viewed as a biased samplingmodel withweight function exp[α+r(x)β] depending on the unknown
parameters α and β , see [9]. In [10], a goodness-of-fit test is considered for a logistic regressionmodel based on case-control
data by employing the maximum semiparametric likelihood estimator of G to test the validity of model (1.1) with r(x) = x.
In [11], quantiles of G are estimated under model (1.1).
In this paper, we propose MHD estimation for the two-sample semiparametric model (1.1). In fully parametric models,

MHD estimators have been shown to achieve efficiency and have excellent robustness properties such as the resistance to
outliers and robustness with respect to model misspecification, see [12,13]. Efficiency combined with excellent robustness
properties make MHD estimators appealing in practice. For a comparison between MHD estimators with the MLEs and
the balance between robustness and efficiency of estimators, see [14]. Moreover, it has been shown that MLE and MHD
estimators are members of a larger class of efficient estimators with various second-order efficiency properties [14]. MHD
estimation in fully parametric models have been investigated by various authors, including [12,15–22]. MHD estimators for
branching processes and for the mixture complexity in a finite mixture model have been studied in [23–25]. However,
MHD estimators for semiparametric models have been studied less. A MHD estimator for finite mixtures of Poisson
regression models with the distribution of covariates unknown has been investigated in [26]. Recently, a MHD estimator
of the mixture parameter for a nonparametric two-component mixture model has been obtained in [27,28]. Apart from
the preceding three articles, there has been very little work reported in the literature on the application of the MHD
methodology for semiparametric models. In this paper, we extend the implementation of the MHD approach to the two-
sample semiparametric model (1.1). Specifically, we construct minimumHellinger distance estimators of parameters α and
β in model (1.1). The proposed estimators are chosen to minimize the Hellinger distance between a semiparametric model
and a nonparametric density estimator. Asymptotic properties such as the existence, strong consistency and asymptotic
normality of the proposedMHD estimators of α and β are investigated. Robustness of proposed estimators is also examined
using a Monte Carlo study.
This paper is organized as follows. In Section 2, we investigateMHD estimators of the parameters α and β and study their

existence and strong consistency. In Section 3, we derive the asymptotic distribution of the proposed estimators. Section 4
contains a simulation study where efficiency and robustness properties of the proposed MHD estimators are studied using
a Monte Carlo study. A real data example is given in Section 5. A detailed proof of asymptotic normality of the estimators
(Theorem 3.2) is given in Section 6.

2. MHD estimators of regression parameters

Define θ = (α, βT )T , where α and β are as in (1.1). Then the model (1.1) can be written as

X1, . . . , Xn
i.i.d.
∼ g(x)

Z1, . . . , Zm
i.i.d.
∼ hθ (x),

(2.1)

where hθ (x) = g(x) exp[(1, r(x))θ ], r(x) = (r1(x), . . . , rp(x)) is a 1 × p vector of continuous functions of x on R,
β = (β1, . . . , βp)

T is a p × 1 parameter vector and α is a normalizing parameter that makes hθ (x) integrate to 1. We
assume here and in what follows that θ ∈ Θ andΘ is a compact subset of Rp+1.
We first define following kernel density estimators of g and hθ based on the data X1, . . . , Xn and Z1, . . . , Zm, respectively,

of (2.1):

gn(x) =
1
nbn

n∑
i=1

K0

(
x− Xi
bn

)
, (2.2)

hm(x) =
1
mbm

m∑
j=1

K1

(
x− Zj
bm

)
, (2.3)

where K0 and K1 are symmetric density functions, bandwidths bn and bm are positive constants such that bn → 0 as n→∞
and bm → 0 asm→∞. We can also employ adaptive kernel density estimators, which use Snbn instead of bn with Sn being
a robust scale statistic. Here we use non-adaptive kernel density estimators (2.2) and (2.3) for convenience. The results can
be easily extended for adaptive kernel density estimators with some additional conditions on Sn.
LetH be the set of all densities w.r.t. Lebesgue measure on the real line. For φ ∈ H , we define a MHD functional T0(φ)

as

T0(φ) = T
(
{hθ }θ∈Θ , φ

)
= argmin

θ∈Θ
‖h1/2θ − φ

1/2
‖. (2.4)
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