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a b s t r a c t

For a normal random matrix Y with mean zero, necessary and sufficient conditions are
obtained for Y ′WkY to be Wishart–Laplace distributed and {Y ′WkY } to be independent,
where eachWk is assumed to be symmetric rather than nonnegative definite.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Let Y be an n × p normal random matrix with mean zero and covariance ΣY and {Wk} be a family of n × n symmetric
matrices. In this paper, we shall obtain a very general Cochran theorem, i.e., obtain necessary and sufficient conditions
for {Y ′WkY }to be independent and each Y ′WkY to be Wishart–Laplace DWp(m1,m2,Σ), i.e., Y ′WkY is distributed as the
difference Q1 − Q2, where Q1 and Q2 are independent (central) Wishart Wp(m1,Σ) and Wp(m2,Σ) distributed random
matrices.
For a brief history, [1] solves the above problem by assuming that m2 = 0,Wk is nonnegative definite and Σ is

nonsingular. Wong andWang [2] remove the nonsingularity condition onΣ so that the result can be applied tomultivariate
components of variance models; see [3–6]. Mathai [7] extended a chi-squared version to one that includes the family of
Laplace distributions; its multivariate version is our version for a family of Wishart–Laplace distributions; see Wong and
Wang [8]. For the case Wk is symmetric, [9] obtained necessary and sufficient conditions for {Y ′WkY } to be independent;
[10] obtained necessary and sufficient conditions for Y ′WkY to beWp(mk,Σ). In Theorem 2.1, we generalize these results
to that for Wishart–Laplace distributions. The result is expected to be more cumbersome; this is partially caused by our not
using appropriate multiplication. Since the sample covarianceΣY and the population covarianceΣ are both symmetric, we
should develop the theory needed within the set, SN , of N × N symmetric matrices, where N may be p, np, or some other
positive integer. Let A, B ∈ SN . The usual matrix product ABmay not be symmetric. So we introduce a Jordan product:

A ∗ B =
1
2
(AB+ BA),
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or more generally,

A ∗C B =
1
2
(ACB+ BCA),

where C ∈ SN . Then (SN , ∗C ) is an example of a Jordan algebra; see, e.g., [11]. Now consider the distribution of QY = Y ′WY
through its moment generating functionMQY , whereW is symmetric. From [12],

MQY (t) = Det [In ⊗ Ip − 2Σ
1/2
Y (W ⊗ t)Σ1/2Y ]

−1/2, t ∈ N◦,

whereN◦ = {t ∈ Sp : In⊗Ip−2Σ
1/2
Y (W⊗t)Σ1/2Y is positive definite}, i.e.,MQY is determined by the linearmap h : Sp → Snp

with

h(t) = Σ1/2Y (W ⊗ t)Σ1/2Y , t ∈ Sp,

or the more flexible map ρ : Sp → Sq with

ρ(t) = M(W ⊗ t)M ′, t ∈ Sp,

whereΣY = M ′M,M ∈ Mq×np, q ≤ np. It can be proved (see [12]) that Y ′WY is Wishart with nonsingular scale parameter
Σ if and only if ρ is homomorphic from (Sp, ∗Σ ) into (Sq, ∗), i.e., it preserves the Jordan products:

ρ(A ∗Σ B) = ρ(A) ∗ ρ(B), A, B ∈ Sp.

The mappings ρ and h are referred to as representations in (Jordan) algebra.
Ourmain result, Theorem 2.1, extends this result to a result for theWishart–Laplace distribution. Also both Theorems 2.1

and 2.3 may be extended to the case where Y ∼ Nn×p(µ,ΣY ) and µ 6= 0. This extension is simply a matter of adding extra
conditions in [9,8].
We remark that the use of representation theory can hardly be over emphasized. Through abstraction, Jordan algebra

and its representations can be muchmore general (see [13,11,14–18,12]). For the present paper, Jordan algebras of the type
SN with Jordan products ∗ or ∗C are enough. Our results may be extended to the case where Y is complex normal (or even
the quaternion normal); this requires the general theory of Jordan algebras and is beyond the scope of the present paper
(see [19]).
Below is a summary of the notation used in what follows.
Ma×b: the family of a× bmatrices over<.
Sa: the family of symmetric a× amatrices over<.
Na: the family of nonnegative definite a× amatrices over<.
A1/2: for A ∈ Na, A1/2 will always be the unique nonnegative definite square root of A.
A+: the Moore–Penrose inverse of a matrix A ∈Ma×b.
A◦: for A ∈Ma×b, A◦ = AA+ is the orthogonal projection of<a onto the image of A.
〈, 〉: the trace inner product onMa×b, 〈A, B〉 = tr(AB′).
‖‖: the trace norm onMa×b, ‖A‖2 = 〈A, A〉.
A⊗ B: for A ∈Ma×b, B ∈Mc×d, A⊗ B = [aijB] ∈Mac×bd.
(Sa, ∗): the family Sa with the Jordan product A ∗ B = 1

2 (AB+ BA).
(Sa, ∗C ): the family Sa with the Jordan product A ∗C B = 1

2 (ACB+ BCA).
Xm(∗C ): for X in Sa, Xm(∗C ) represents X to the powermwith respect to the Jordan product ∗C : Xm(∗C ) = XCXCXCX . . . XCX
with X appearingm times in the product.
Knp: the commutation matrix Knp has the following basic properties: K ′np = Kpn, KnpK

′
np = Inp, Knp(A⊗ B)Kqr = B⊗A, A ∈

Mp×q, B ∈ Mn×r , and for a random n× pmatrix Y ,ΣY ′ = K ′npΣYKnp; see, for example, [20].
Y ∼ Nn×p(µ,ΣY ): Y is an n× p random matrix with mean µ and covariance matrixΣY . By this, we mean that random
vector δ(Y ) is normal with mean δ(µ) and covariance ϕ(ΣY ), where δ(Y ) and δ(µ) represent the coordinate vectors of
Y and µ in<np with respect to an orthogonal basis forMn×p and ϕ(ΣY ) = E(δ(Y )− δ(µ))(δ(Y )− δ(µ))′. (δ(·) and ϕ(·)
above may also be written as [·]).
DWp(m1,m2,Σ): the Wishart–Laplace distribution with (m1,m2) degrees of freedom and p × p nonnegative definite
scale matrixΣ , i.e. the distribution of Z ′KZ , where Z ∼ Nm×p(0, Im ⊗Σ) and K = diag[Im1 ,−Im2 ].

2. Main results

The main theorems of this section require several notions and results some of which arise from the general theory of
Jordan algebras. For convenience these notions and results are given in the Appendix (see Lemmas A.1–A.3) and will be
referenced when necessary.
We shall now state and prove our main result.

Theorem 2.1. Suppose that:
(A1) Y ∼ Nn×p(0,ΣY );
(A2) ΣY ′ = L′L, L = [L1, L2, . . . , Lp], Li ∈ Mq×n, q ≤ np;
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