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a b s t r a c t

For a discrete time second-order stationary process, the Levinson–Durbin recursion is used
to determine the coefficients of the best linear predictor of the observation at time k + 1,
given k previous observations, best in the sense of minimizing the mean square error.
The coefficients determined by the recursion define a Levinson–Durbin sequence. We also
define a generalized Levinson–Durbin sequence and note that binomial coefficients form a
special case of a generalized Levinson–Durbin sequence. All generalized Levinson–Durbin
sequences are shown to obey summation formulas which generalize formulas satisfied
by binomial coefficients. Levinson–Durbin sequences arise in the construction of several
autoregressive model coefficient estimators. The least squares autoregressive estimator
does not give rise to a Levinson–Durbin sequence, but least squares fixed point processes,
which yield least squares estimates of the coefficients unbiased to order 1/T , where T is
the sample length, can be combined to construct a Levinson–Durbin sequence. By contrast,
analogous fixed point processes arising from the Yule–Walker estimator do not combine
to construct a Levinson–Durbin sequence, although the Yule–Walker estimator itself does
determine a Levinson–Durbin sequence. The least squares and Yule–Walker fixed point
processes are further studied when the mean of the process is a polynomial time trend
that is estimated by least squares.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

The Levinson–Durbin recursion has long been a fixture in time series analysis. It is commonly viewed in two
contexts. One is that of prediction for a discrete time, second-order stationary process {yt} with known structure. Given
y1, . . . , yk, for any k ≥ 1 the recursion determines the coefficients αj,k, j = 1, . . . , k, of the best linear predictor of
yk+1,

ŷk+1 = −α1,kyk − · · · − αk,ky1, (1.1)

best in the sense ofminimizing themean square error. The recursion beginswith specification ofα1,1, and at thenth stage one
obtainsα1,n, . . . , αn,n. Themean square error of the predictor is also specified at each step. Levinson [1] devised the recursion
to give a simple procedure for construction of the best linear predictor when the structure of the process is known. His paper
was reprinted as Appendix B toWiener’smonograph on time series [2].Wiener’swork had originally been issued in February
1942 as a classified government report. For some details of this history see [3]. The second context for the recursion is that
of estimation of the coefficients of an autoregressive model of finite order, given data y1, . . . , yT . The sample Yule–Walker
equations are commonly used to construct an estimator of the coefficients. Bartlett [4, pp. 264–265], Daniels [5, p. 183] and
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Durbin [6] all derived the recursion as a simple method of solving the sample Yule–Walker equations, which are linear in
the coefficients.
The recursion determines a double sequence αj,n, j = 1, . . . , n, n = 1, 2, . . .. The sequence αn,n, n = 1, 2, . . . ,

determines all of the values αj,n.
In this paper we study properties of sequences produced by the Levinson–Durbin recursion, and we further study

generalization of such sequences.

Definition 1. αj,n, j = 1, . . . , n, n = 1, 2, . . ., is a Levinson–Durbin sequence if the coefficients, all real-valued, satisfy

αj,n = αj,n−1 + αn,nαn−j,n−1, j = 1, . . . , n− 1, n = 2, 3, . . . , (1.2)

and ∣∣αn,n∣∣ < 1, n = 1, 2, . . . . (1.3)

If (1.2) holds and the αn,n’s are not subject to (1.3), we say that the αj,n’s form a generalized Levinson–Durbin sequence.

For the prediction problem the recursion (1.2) is used together with (1.3) and the −αn,n’s defined to be the partial
correlations of the process being predicted. In the context of autoregressive estimation, the Yule–Walker estimator uses
(1.2) and (1.3) and defines the−αn,n’s to be the sample partial correlations. Other estimators (the Burg and Kay procedures,
mentioned below) employ (1.2) and (1.3) and define the αn,n’s differently. A generalized Levinson–Durbin sequence allows
arbitrary specification of the αn,n’s. If (1.3) does hold, the sequence of−αn,n’s forms the partial correlation function for some
second-order stationary process.
Levinson–Durbin sequences arise, e.g., from (i) Yule–Walker and tapered Yule–Walker estimation of the coefficients of an

autoregressive process, (ii) fixed point models arising in least squares estimation of the autoregressive process coefficients,
(iii) estimation of the autoregressive process coefficients by Burg’s method and (iv) estimation of the autoregressive process
coefficients by Kay’s method [7].
If αn,n = 1 for each n, then (1.2) generates the binomial coefficients. Taking into account the symmetric structure

of binomial coefficients, we see that (1.2) is simply an expression of Pascal’s triangle if αn,n = 1 for each n. The
binomial coefficients also arise as the limit of a sequence of fixed point models determined by least squares estimation
of autoregressive process coefficients, as noted in [8]. This will be discussed in Section 3.
The Yule–Walker estimator of the coefficients of an autoregressive process of known finite order p is determined by a

Levinson–Durbin recursion which defines a sequence for which αj,n = αj,p, j = 1, . . . , p, and αj,n = 0, j = p + 1, . . . , n,
for all n > p. The values −αn,n, n = 1, . . . , p, are the Yule–Walker sample partial correlations. For sample length T the
order 1/T bias of the Yule–Walker estimator has been discussed in [9,10]. For each value of p numerical calculations show
that there is a unique autoregressive process of order p (unique up to scale) for which the order 1/T bias of the Yule–Walker
estimator is 0. This process is called a fixed point process because it is given by the fixed point of a contractionmapping. This
result may be extended to the case where a polynomial trend in time is estimated by least squares and the Yule–Walker
estimator is subsequently calculated from the trend residuals. The Yule–Walker fixed point processes differ according to
the autoregressive order p and the degree of the estimated polynomial trend, and they can be determined numerically
by iterating the contraction mappings. Although the Yule–Walker estimator itself yields a Levinson–Durbin sequence, it is
interesting that the Yule–Walker fixed point processes for a given degree of estimated polynomial trend do not combine
to form a Levinson–Durbin sequence. These comments also hold for the tapered Yule–Walker estimator, with the proviso
that the fixed point processes depend upon the specific data taper chosen. The tapered Yule–Walker estimator is considered
in [11,12].
The order 1/T bias of the least squares estimator of the coefficients of an autoregressive process of known finite order

p has been derived in [9,10,13]. The bias expression is linear in the autoregressive parameters and defines a contraction
mapping. A fixed point process which is unique up to scale and for which the least squares estimator is unbiased to order
1/T can be derived analytically for each autoregressive order p and degree of estimated polynomial trend in time. Moreover,
for eachdegree of estimatedpolynomial trend, the fixedpoint processes forma sequence of projections froman infinite order
fixed point process. In contrast to the Yule–Walker situation, the least squares estimator does not yield a Levinson–Durbin
sequence, but the least squares fixed point processes for a given degree of estimated polynomial trend do combine to form
a Levinson–Durbin sequence.
The Burg and Kay estimators both generate Levinson–Durbin sequences. Burg’s algorithm determines the αn,n’s by

minimizing a sequence of sums of squares of forward and backward one-step prediction errors. The remaining αj,n values
are then determined from (1.2). For a description of the Burg estimator see, for example, [14, pp. 147–8]. Kay’s estimator [7]
of the autoregressive coefficients is a recursive maximum likelihood procedure. The parameter αn,n is estimated at the nth
stage by maximizing a partial Gaussian likelihood and then (1.2) is applied to determine α1,n, . . . , αn−1,n.
This paper is organized as follows. In Section 2 some properties of generalized Levinson–Durbin sequences are presented.

These results generalize relations satisfied by binomial coefficients. It is also noted that the Levinson–Durbin sequences
define minimum phase filters. Least squares estimation bias and least squares fixed point processes are described in
Section 3. Section 4 is devoted to Yule–Walker estimation bias and fixed point processes. Concluding discussion appears
in Section 5, and proofs are in Section 6.
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