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a b s t r a c t

Motivated by a practical problem, [Z.W. Cai, P.A. Naik, C.L. Tsai, De-noised least squares
estimators: An application to estimating advertising effectiveness, Statist. Sinica 10 (2000)
1231–1243] proposed a new regression model with noised variables due to measurement
errors. In this model, the means of some covariates are nonparametric functions of an
auxiliary variable. They also proposed a de-noised estimator for the parameters of interest,
and showed that it is root-n consistent and asymptotically normalwhenundersmoothing is
applied. The undersmoothing, however, causes difficulty in selecting the bandwidth. In this
paper, we propose an alternative corrected de-noised estimator, which is asymptotically
normal without the need for undersmoothing. The asymptotic normality holds over a fairly
wide range of bandwidth. A consistent estimator of the asymptotic covariancematrix under
a general stationary error process is also proposed. In addition, we discuss the fitting of
the error structure, which is important for modeling diagnostics and statistical inference,
and extend the existing error structure fitting method to this new regression model. A
simulation study is made to evaluate the proposed estimators, and an application to a set
of advertising data is also illustrated.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

Motivated by studying the relationship between awareness and television rating points of TV commercials for Cadbury
Dairy Milk chocolate brand, one of the major chocolate brands in England, [1] proposed a new regression model where
covariables and response are observed with errors over time (considered as an auxiliary variable). This model is proved to
be also useful in marketing science, finance and security analysis. For example, [2] used this model to analyze the risk of
stocks. The details of this model are as follows. Let (ξ1, . . . , ξp; η) be variables of interest that satisfy a linear relationship

η = ξ1β1 + · · · + ξpβp + z1α1 + · · · + zqαq (1.1)

with some additional covariates z1, . . . , zq, where β = (β1, . . . , βp)T and α = (α1, . . . , αq)T are unknown parameters to be
estimated and the superscript (T) denotes the transpose of a vector or matrix. Measurements of (ξ1, . . . , ξp; η; z1, . . . , zq)
are collected over time to yield a data set of {(x1i, . . . , xpi; yi, z1i, . . . , zqi), i = 1, . . . , n}with

xsi = ξs(ti)+ usi for s = 1, . . . , p and yi = ηi + εi, (1.2)
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where ti is the scaled time for the ith measurement such that 0 ≤ ti ≤ 1, usi and εi are measurement errors. The covariates
(z1i, . . . , zqi) are assumed to be observedwithout error andmay include the constant component 1 to represent the intercept
in the model. A key ingredient of model (1.1) is that the ξs are time dependent. In line with usual regression models, (1.1)
and (1.2) may be rewritten as

yi = ξ1(ti)β1 + · · · + ξp(ti)βp + z1iα1 + · · · + zqiαq + εi and xsi = ξs(ti)+ usi, (1.3)

where i = 1, . . . , n and s = 1, . . . , p. Model (1.3) can be viewed as a semiparametric measurement error model with an
auxiliary variable t .
Using awavelet de-noising process, [1] proposed ade-noised least squares estimator (DLSE) for the regression coefficients

β and α when the errors are independent and identically distributed (i.i.d.). The independence assumption on the errors
εi, however, is not always appropriate in applications since η is time dependent. Instead, the errors εi are often serially
correlated and thus should be modeled as a time series. To accommodate the serial correlation in the errors, they further
investigated the estimating problem of model (1.3) when the errors are from a moving average process of infinite order,
denoted by MA(∞), which has the following form:

εi =

∞∑
j=0

φjei−j, with
∞∑
j=0

|φj| <∞, (1.4)

where {ej} are i.i.d. random variables with E(ej) = 0 and Var(ej) = σ 2e < ∞. They derived the asymptotic normality
of the DLSE by using nonparametric undersmoothing. Undersmoothing is not uncommon in nonparametric estimation.
See, for example, [3–6]. However, it introduces difficulty in choosing the bandwidth, as it does not allow a data-driven
choice. In order to overcome this problem, we propose in this paper a corrected de-noised estimator which does not
need undersmoothing and can achieve an optimal strong convergence rate. Moreover, [2] presented a consistent estimator
of the asymptotic covariance matrix only for an AR(1) error process, which is obviously rather restrictive. In this paper,
we construct a consistent estimator of the covariance matrix under a general stationary error process. Furthermore, we
discuss the estimation of the error structure in the model together with other parameters of interest, which is important to
performing model diagnostics and making better statistical inference.
The rest of the paper is organized as follows. In Section 2we propose a corrected DLS estimator, and derive its asymptotic

normality and strong convergence rate. In Section 3,we construct a consistent estimator of the asymptotic covariancematrix
under a general stationary error process. Section 4 investigates the fitting of the error structure. As an ARMAmodel is often a
good approximation of the underlying process of the errors, we restrict Section 5 to the ARMA process and suggest amethod
for determining its order and then estimating the coefficients. Section 6 presents some simulation results and an example of
application on a set of advertising data; this is followed by concluding remarks in Section 7. All proofs of theoretical results
are postponed to Appendix A.

2. DLS estimation and corrected DLS estimator

In this section we first present the DLSE. We assume that the sequence of designs {ti}ni=1 forms an asymptotically regular
sequence [7] in the sense that∫ ti

0
p(t)dt =

i− 1
n− 1

,

where p(·) denotes a positive density function on the interval [0, 1]. Obviously, this implies max1≤i≤n(ti − ti−1) = O(n−1)
with t0 = 0. Like [2]we only de-noise the x variable as the de-noising of ydoes not enhance the performance of the estimator.
It is worthwhile to notice that the results of this paper can be readily extended to cover random as well as multivariate
covariate t .
According to (1.2) we can apply the usual nonparametric method to de-noise ξ(t). Although there are several methods

available in the literature which can be used to screen out noise, for ease of exposition, we use the Nadaraya–Watson kernel
smoother. The de-noised variable ξ̂s(t) is given by

ξ̂s(t) =
n∑
i=1

ωni(t)xsi for s = 1, . . . , p (2.1)

where ωni(t) = κ((ti − t)/h)/(nh), κ(·) is a symmetric kernel function and h is the bandwidth.
For notational convenience, let X = (X1, . . . , Xn)T ∈ Rn×p, Xi = (x1i, . . . , xpi)T, Ξ̂ = (Ξ̂1, . . . , Ξ̂n)

T
∈ Rn×p, Ξ̂i =

(ξ̂1(ti), . . . , ξ̂p(ti))T, Z = (Z1, . . . , Zn)T ∈ Rn×q, Zi = (z1i, . . . , zpi)T, Y = (y1, . . . , yn)T ∈ Rn, Ξ = (Ξ1, . . . ,Ξn)T ∈ Rn×p,
Ξi = (ξ1(ti), . . . , ξp(ti))T, U = (U1, . . . ,Un)T ∈ Rn×p, Ui = (u1i, . . . , upi)T, ε = (ε1, . . . , εn)

T
∈ Rn. Also define the

following two matrices:

Ωn =
1
n

(
Ξ TΞ Ξ TZ
ZTΞ ZTZ

)
, Ω̂n =

1
n

(
Ξ̂ TΞ̂ Ξ̂ TZ
ZTΞ̂ ZTZ

)
.
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