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a b s t r a c t

The penalized profile sampler for semiparametric inference is an extension of the profile
sampler method [B.L. Lee, M.R. Kosorok, J.P. Fine, The profile sampler, Journal of the
American Statistical Association 100 (2005) 960–969] obtained by profiling a penalized
log-likelihood. The idea is to base inference on the posterior distribution obtained by
multiplying a profiled penalized log-likelihood by a prior for the parametric component,
where the profiling and penalization are applied to the nuisance parameter. Because the
prior is not applied to the full likelihood, the method is not strictly Bayesian. A benefit
of this approximately Bayesian method is that it circumvents the need to put a prior
on the possibly infinite-dimensional nuisance components of the model. We investigate
the first and second order frequentist performance of the penalized profile sampler,
and demonstrate that the accuracy of the procedure can be adjusted by the size of the
assigned smoothing parameter. The theoretical validity of the procedure is illustrated
for two examples: a partly linear model with normal error for current status data and
a semiparametric logistic regression model. Simulation studies are used to verify the
theoretical results.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

Semiparametricmodels are statisticalmodels indexed by both a finite dimensional parameter of interest θ and an infinite
dimensional nuisance parameterη. In order tomake statistical inference about θ separately fromη, we estimate the nuisance
parameter with η̂θ , its maximum likelihood estimate at each fixed θ , i.e.

η̂θ = argmax
η∈H

likn(θ, η),

where likn(θ, η) is the likelihood of the semiparametric model given n observations and H is the parameter space for η.
Therefore, we can do frequentist inference about θ based on the profile likelihood, which is typically defined as

pln(θ) = sup
η∈H
likn(θ, η).

The convergence rate of the nuisance parameter η is the order of d(η̂θ̃n , η0), where d(·, ·) is some metric on η, θ̃n is any
sequence satisfying θ̃n = θ0 + oP(1), and (η0, θ0) is the true value of (η, θ). Typically,

d(η̂θ̃n , η0) = OP(‖θ̃n − θ0‖ + n
−r), (1)
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where ‖ · ‖ is the Euclidean norm and r > 1/4. Of course, a smaller value of r leads to a slower convergence rate of the
nuisance parameter. For instance, the nuisance parameter in the Cox proportional hazards model with right censored data,
the cumulative hazard function, has the parametric rate, i.e., r = 1/2. If current status data is applied to the Cox model
instead, then the convergence rate will be slower, with r = 1/3, due to the loss of information provided by this kind of data.
The profile sampler is the procedure of sampling from the posterior of the profile likelihood in order to estimate and

draw inference on the parametric component θ in a semiparametric model, where the profiling is done over the possibly
infinite-dimensional nuisance parameter η. [9] show that the profile sampler gives a first order correct approximation
to the maximum likelihood estimator θ̂n and consistent estimation of the efficient Fisher information for θ even when
the nuisance parameter is not estimable at the

√
n rate. Another Bayesian procedure employed to do semiparametric

estimation is considered in [16] who study the marginal semiparametric posterior distribution for a parameter of interest.
In particular, [16] show that marginal semiparametric posterior distributions are asymptotically normal and centered at the
corresponding maximum likelihood estimates or posterior means, with covariance matrix equal to the inverse of the Fisher
information. Unfortunately, this fully Bayesianmethod requires specification of a prior on η, which is quite challenging since
for some models there is no direct extension of the concept of a Lebesgue dominating measure for the infinite-dimensional
parameter set involved [8]. The advantages of the profile sampler for estimating θ compared to other methods is discussed
extensively in [2,3,9].
The motivation for studying second order asymptotic properties of the profile sampler comes from the observed

simulation differences in the Cox model with different types of data, i.e. right censored data [2] and current status data [9].
The profile sampler generated based on the first model yields much more accurate estimation results comparing to the
second model when the sample size is relatively small. [2,3] have successfully explored the theoretical reasons behind the
above phenomena by establishing the relation between the estimation accuracy of the profile sampler, measured in terms of
second order asymptotics, and the convergence rate of the nuisance parameters. Specifically, the profile sampler generated
from a semiparametric model with a faster convergence rate usually yields more precise frequentist inference of θ . These
second order results are verified in [2,3] for several examples, including the proportional odds model, case-control studies
with missing covariates, and the partly linear model. The convergence rates for these models range from the parametric to
the cubic. The work in [3] has shown clearly that the accuracy of the inference for θ based on the profile sampler method is
intrinsically determined by the semiparametric model specifications through its entropy number.
In many semiparametric models involving a smooth nuisance parameter, it is often convenient and beneficial to perform

estimation using penalization. One motivation for this is that, in the absence of any restrictions on the form of the function
η, maximum likelihood estimation for some semiparametric models leads to over-fitting. Seminal applications of penalized
maximum likelihood estimation include estimation of a probability density function in [17] and nonparametric linear
regression in [18]. Note that penalized likelihood is a special case of penalized quasi-likelihood studied in [13]. Under certain
reasonable regularity conditions, penalized semiparametric log-likelihood estimation can yield fully efficient estimates for
θ (see, for example, [13]). As far as we are aware, the only general procedure for inference for θ in this context known to be
theoretically valid is a weighted bootstrap with bounded random weights (see [11]). It is even unclear whether the usual
nonparametric bootstrap will work in this context when the nuisance parameter has a convergence rate r < 1/2.
The purpose of this paper is to ask the somewhat natural question: does sampling from the exponential of a profiled

penalized log-likelihood (which process we refer hereafter to as the penalized profile sampler) yield first and even second
order accurate frequentist inference? The conclusion of this paper is that the answer is yes and, moreover, the accuracy of
the inference depends in a fairly simple way on the size of the smoothing parameter.
The unknown parameters in the semiparametric models we study in this paper include θ , which we assume belongs

to some compact set Θ ⊂ Rd, and η, which we assume to be a function in the Sobolev class of functions Hk or its subset
HM
k ≡ Hk ∩ {η : ‖η‖∞ ≤ M} for some knownM <∞ supported on some compact set on the real line. The Sobolev class
of functionsHk is defined as the set {η : J2(η) ≡

∫
Z
(η(k)(z))2dz <∞}, where η(j) is the j-th derivative of η with respect to

z. Obviously J2(η) is some measurement of complexity of η. We denoteHk as the Sobolev function class with degree k. The
penalized log-likelihood in this context is:

log likλn(θ, η) = log lik(θ, η)− nλ
2
nJ
2(η), (2)

where log lik(θ, η) ≡ nPn`θ,η(X), `θ,η(X) is the log-likelihood of the single observation X , and λn is a smoothing parameter,
possibly dependent on data. In practice, λn can be obtained by cross-validation [21] or by inspecting the various curves for
different values of λn. The penalized maximum likelihood estimators θ̂n and η̂n depend on the choice of the smoothing
parameter λn. Consequently, we use the notation θ̂λn and η̂λn for the remainder of this paper to denote the estimators
obtained frommaximizing (2). In particular, a larger smoothing parameter usually leads to a less rough penalized estimator
of η0. It is of interest to establish the asymptotic property of the proposed penalized profile sampler procedure with a data-
driven λn. Further studies on this issue are needed, but it is beyond the scope of this paper.
For the purpose of establishing first order accuracy of inference for θ based on the penalized profile sampler, we assume

that the bounds for the smoothing parameter are as follows:

λn = oP(n−1/4) and λ−1n = OP(n
k/(2k+1)). (3)
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