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a b s t r a c t

We consider the performance of the independent rule in classification of multivariate
binary data. In this article, broad studies are presented including the performance of the
independent rule when the number of variables, d, is fixed or increased with the sample
size, n. The latter situation includes the case of d = O(nτ ) for τ > 0 which cover ‘‘the small
sample and the large dimension’’, namely d � n when τ > 1. Park and Ghosh
[J. Park, J.K. Ghosh, Persistence of plug-in rule in classification of high dimensional binary
data, Journal of Statistical Planning and Inference 137 (2007) 3687–3707] studied the
independent rule in terms of the consistency of misclassification error rate which is
called persistence under growing numbers of dimensions, but they did not investigate the
convergence rate. We present asymptotic results in view of the convergence rate under
some structured parameter space and highlight that variable selection is necessary to
improve the performance of the independent rule. We also extend the applications of the
independent rule to the case of correlated binary data such as the Bahadur representation
and the logit model. It is emphasized that variable selection is also needed in correlated
binary data for the improvement of the performance of the independent rule.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

High dimensional data is gettingmore common in recent statistical science and related fields. There have been extensive
studies on classification problems in high dimension both empirically and theoretically, however the studies have focused
mainly on normal populations. See for example [1–3]. In such high dimensional data, one typical approach is simplifying
classification rule such as the independent rule (or naive Bayes rule) which has been successful in classification problem.
The independent rule has been widely used especially for the case of classification of normal populations due to the
parsimonious model by ignoring off-diagonal terms in covariance matrix. Bickel and Levina [4] studied the performances of
the independent rule and showed that the independent rule outperforms Fisher’s rule under some structured parameter
space. Fan and Fan [3] also investigated the independent rule and provides the adaptive variable selection procedures
which are effective especially in the large dimension and small samples. Most studies on the independent rule highlights
that the simplified rules such as the independent rule outperform the full model, for example Fisher’s rule. Fan and Lv [5]
investigated the necessity of variable selection in various problems including regression and classification. In this article, as
the classification problem of non-normal populations, we consider multivariate binary data which are commonly used in
many applied areas, ranging from DNA fingerprint data to FMRI and bacterial taxonomy etc.
The independent rule has been also widely used in the problem of classification of multivariate binary data and

has achieved successful performance. For example, see [2]. As a recent empirical study, Wilbur et al. [6] analyzed DNA
fingerprinting data which is high dimensional multivariate binary data and they emphasized that the independent rule
combined with a variable selection procedure performs much better than a rule without considering variable selection.
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Park and Ghosh [7] studied the performance of the independent rule in multivariate binary data in the case of a growing
number of variables depending on the sample size. They showed that variable selection is necessary to achieve the optimal
Bayes error, however they did not study the case of correlated binary data and the convergence rate. In this paper, we focus
on the rate of convergence such as how fast misclassification error rate converges to the Bayes error rate. We also study the
performance of the independent rule for the case of correlated binary data.
Throughout this paper, we define (Y , X) to be a random vector where Y = 1 or 0 and X is a d-dimensional multivariate

binary vector. Let f (x) = P(Y = 1|X = x) be the posterior probability of Y = 1 given X = x, then the optimal rule
is δ(X) ≡ I(f (x) > 1/2) where I(·) is indicator function. The error rate of δ(X) is theoretically the minimum error rate
called the Bayes error. However, in practice, δ(X) is unknown which needs to be estimated based on the observed samples.
This estimated rule δ̂(X) is based on estimates of f , namely f̂ , therefore δ̂(X) = I(f̂ (x) > 1/2) and its corresponding
misclassification error rate is P(δ̂(X) 6= Y ). This f̂ is obtained under the assumption that for given Y , the variables are
independent even for dependent variables. With this independent rule δ̂, one main issue in this paper is the behavior of
r(f , f̂ ) ≡ P(δ̂(X) 6= Y ) − P(δ(X) 6= Y ) especially when we discuss the convergence rate of r(f , f̂ ). Due to the difficulty of
computation of r(f , f̂ ), one alternative approach is to use a well known inequality such that r(f , f̂ ) ≤ (2R(f , f̂ ))1/2 where
R(f , f̂ ) = E(f (X)− f̂ (X))2.
In this paper, we investigate the behavior of r(f , f̂ ) considering both R(f , f̂ ) and r(f , f̂ ). First, we present studies on the

convergence rate of r(f , f̂ )where the number of variables is fixed, which may be considered as the classical asymptotics. In
such case, we shall see that the convergence rate of r(f , f̂ ) is dramatically different from R(f , f̂ ). On the contrary, for high
dimensional data, it is assumed that the number of variables is allowed to increase with the sample size with d = O(nτ ).
This set up covers the large dimension and the small sample size especially when τ > 1, namely the d � n case. This
growing number of variables expands the model space, called a triangular array framework which is commonly assumed
in the area of high dimensional data analysis. See for example [8,9,7]. In such high dimensional data, some restrictions are
put on parameter space to assume sparsity and the pre-ordered variables which imply that the variables are ordered such
that the early located variables are more important than the latter part of variables. We also discuss the case where the
pre-ordered condition is removed but it is assumed that there exists a rearrangement of variables which leads to the pre-
ordered case, which is called an unordered case. In this situation, the rearrangement of variables needs to be found out
based on the observed data and we show that δ̂(X) with selected variables after rearrangement achieves similar results as
the pre-ordered case.
The above results of the independent rule are obtained when all the variables are also independent, however one main

reason that the independent rule has been widely used in high dimensions is its highly successful performance even when
variables are not independent. We extend our study to the case of correlated binary data which are modeled for example
by the Bahadur representation and the logit model. See [10]. One may consider the independent rule as a sort of regularized
rule since we ignore estimation on dependent structure, however, we shall see that in very high dimensional data, the
independent rule is not enough regularization to achieve the Bayes error. We also need to consider variable selection as
additional regularization to improve the performance of the independent rule, which can be regarded as the same result
as [3] in the classification of normal populations.
This paper is organized as follows. In Section 2, we introduce some notations and definitions used in this paper. In

Section 3, when the number of variables is fixed, we discuss the convergence rate of r(f , f̂ ). In Section 4, the performance
of the independent rule for the case of independent multivariate binary data are presented for the case when variables
are selected and when not selected and the corresponding convergence rates of r(f , f̂ ) will be compared. In Section 5,
we extend the previous results to correlated multivariate binary cases such as the Bahadur representation and the logit
model and present similar results that the independent variable case including the independent rule with selected variables
produces better performance than the independent rule with all the variables. We present simulation studies in Section 6
and discussion and future work in Section 7.

2. Notations

Suppose there are d-dimensional multivariate binary vectors X = (X1, X2, . . . , Xd) which are generated from X |Y = j
conditioned on jth class(j = 0 or 1). Conditioned on Y = j, the marginal distribution of X , Xi|Y = j, is a Bernoulli(pji)
random variable with pji. From the jth class, Xkj = (X

k
j1, . . . , X

k
ji , . . . , X

k
jd) for 1 ≤ k ≤ nj are observed and the collection of

observations is denoted by D = {(Xkj , Y
k), Y k = j, 1 ≤ k ≤ nj, j = 0, 1}. The prior probabilities can be P(Y = 1) = p > 0

and P(Y = 0) = 1 − p = q, however, without loss of generality, we may consider homogeneous prior probabilities,
i.e., p = q = 1/2 and consequently equal sample size case, n1 = n2 ≡ n. With the assumption of n1/(n1+n2)→ p > 0, we
can easily extend to the non-homogeneous casewith the preservation of all asymptotic results presented in this paper. Since
each variable is modeled by a Bernoulli random variable such that Xji ∼ Bernoulli(pji) for j = 0, 1 and 1 ≤ i ≤ n, we define θ

θ ≡ θd ≡ (θ1d, θ2d) ≡ (p01, p02 . . . , p0d, p11, p12 . . . , p1d). (1)

If correlated multivariate binary data are considered, there may be more parameters which determine dependent structure
of Bernoulli variables, namely the parameter vector %. The Bahadur representation and the logit model in Section 5 will be
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