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a b s t r a c t

This paper addresses the problem of estimating the normal mean matrix in the case
of unknown covariance matrix. This problem is solved by considering generalized
Bayesian hierarchical models. The resulting generalized Bayes estimators with respect
to an invariant quadratic loss function are shown to be matricial shrinkage equivariant
estimators and the conditions for their minimaxity are given.
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1. Introduction

The problem of estimating the normal mean matrix with known or unknown covariance matrices has been extensively
studied from a decision-theoretic viewpoint in the literature, for instance, [1–10]. Their approaches to this problem include
the empirical Bayes and the unbiased risk estimatemethods. On the other hand, generalized Bayes procedureswere recently
applied in the case of known covariance. Berger et al. [11] gave general results on admissibility of certain hierarchical Bayes
estimators and Tsukuma [12] proposed a Bayes minimax estimator. This paper addresses the problem of estimating the
normal mean matrix in the case of unknown covariance and provides some generalized Bayes minimax estimators relative
to an invariant quadratic loss function.
We begin with explaining the estimation problem considered in this paper. Let X be an m × p random matrix, where

the row vectors, xi’s, are mutually independent and the i-th row vector xi has a multivariate normal distribution with mean
vector θi and positive definite covariance matrix6. Then (xt1, . . . , x

t
m)
t follows multivariate normal distribution with mean

vector (θt1, . . . , θ
t
m)
t and covariancematrix Im⊗6. Here Bt indicates the transpose of a vector (ormatrix) B, Im is the identity

matrix of orderm and Im ⊗ 6 indicates the Kronecker product of Im and 6. Also, let S be a p× p randommatrix having the
Wishart distribution with n degrees of freedom and mean n6. These models are written as

X ∼ Nm×p(2, Im ⊗ 6), S ∼ Wp(n,6), (1.1)
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where X = (x1, . . . , xm)t and2 = (θ1, . . . , θm)t . It is assumed that2 and 6 are unknown and that X and S are mutually
independent. Note that themodel (1.1) is a canonical form of amultivariate linear regressionmodel. Our aim of this paper is
to construct an eminent estimator of the meanmatrix2 on the basis of X and S relative to invariant quadratic loss function

L(δ,2;6) = tr (δ−2)6−1(δ−2)t , (1.2)
where δ = δ(X, S) is an estimator of2 and trA and A−1 denote, respectively, the trace and the inverse of a square matrix
A. Every estimator is evaluated by the risk function E[L(δ,2;6)], namely, the expected loss with respect to (1.1).
Let Om be the set of orthogonal matrices of order m and let P be that of p × p nonsingular matrices. Denote m ∨ p =

max(m, p) and m ∧ p = min(m, p). Let F = diag (f1, . . . , fm∧p) be a diagonal matrix based on ordered eigenvalues
f1 ≥ · · · ≥ fm∧p ≥ 0, where, for m < p, XS−1X t = RFRt with R ∈ Om and, for m ≥ p, Q tSQ = Ip and Q tX tXQ = F
with Q ∈ P . Konno [7–9] showed that for the group of transformations X → OXV and S → V tSV with any O ∈ Om and
any V ∈ P , the class of equivariant estimators with matricial shrinkage factors is expressed by

δSH =

{
(Im − RF−18(F)Rt)X ifm < p,
X(Ip − QF−18(F)Q−1) ifm ≥ p.

(1.3)

Here, 8(F) = diag (φ1(F), . . . , φm∧p(F)) is certain (m ∧ p) × (m ∧ p) diagonal matrix with diagonal elements, φi(F)’s,
being functions of F . The maximum likelihood estimator of2 is δML = X , which has equivariance and is minimax with the
constant riskmp. Konno [7–9] also showed that if
(i) for i = 1, . . . ,m ∧ p, φi(F) is nondecreasing in fi,
(ii) 0 ≤ φm∧p(F) ≤ φm∧p−1(F) ≤ · · · ≤ φ1(F) ≤ 2(m∨p−m∧p−1)

n+(2m−p)∧p+1 ,

then δSH has smaller risk than δML relative to the loss (1.2), namely, δSH is minimax.
In this paper, we consider generalized Bayes estimation of the mean matrix 2 via hierarchical models. To specify

the hierarchical prior distributions, we use the following notation. Let 0c×d be the c × d zero matrix. Denote by |A| the
determinant of a square matrix A. For a positive definite matrix B, let B1/2 be a symmetric matrix such that B = B1/2B1/2
and B−1/2 stands for the inverse matrix of B1/2. If A−B is positive definite for square matrices A and B, then we write A > B
or B < A. Also, let I(·) be the indicator function. In the case wherem < pwe consider hierarchical Bayes model whose first
stage prior of2 is

2|�,6−1 ∼ Nm×p(0m×p,�⊗ 6) (1.4)

and second stage priors of� and 6−1 have densities proportional to, respectively,

π(�) ∝ |Im + �|−a/2−mI(� > 0m×m), (1.5)

π(6−1) ∝ |6−1|(b−1)/2I(6−1 > 0p×p). (1.6)
For the case ofm ≥ pwe utilize the following hierarchical priors:

2|4 ∼ Nm×p(0m×p, Im ⊗4), (1.7)

π(4|6−1) ∝ |Ip + 6−1/246−1/2|−a/2−pI(4 > 0p×p), (1.8)

π(6−1) ∝ |6−1|(b+p)/2I(6−1 > 0p×p). (1.9)
These prior distributions are regarded as certain extensions of Lin and Tsai [13] for generalized Bayes minimax estimation
of the normal mean vector.
The (generalized) Bayes estimator is usually defined as the onewhichminimizes the posterior expected loss. Our resulting

generalized Bayes estimators against the above hierarchical priors with respect to the quadratic loss (1.2) are given by

δGB =

{
Eπ(2,�,6−1|X,S)[26

−1
]
{
Eπ(2,�,6−1|X,S)[6

−1
]
}−1

ifm < p,
Eπ(2,4,6−1|X,S)[26

−1
]
{
Eπ(2,4,6−1|X,S)[6

−1
]
}−1

ifm ≥ p,

where Eπ(2,�,6−1|X,S) and Eπ(2,4,6−1|X,S) denote the expectations associated with the posterior distributions of (2,�,6
−1)

and (2,4,6−1), respectively.
This paper concerns minimaxity of δGB. If δGB belong to the class (1.3) then Konno [7–9]’ results given above enable us to

evaluate the risk functions of δGB. Indeed, Section 2 gives that the generalized Bayes estimators δGB have equivariance with
matricial shrinkage factors. Section 3 provides the conditions forminimaxity of δGB and shows that they are given as follows:
(i) a+m∨p > 0, (ii) n−m∧p+b−a+2 > 0 and (iii) (a+m+p−1)/(n+b−a+1) ≤ 2(m∨p−m∧p−1)/{n+(2m−p)∧p+1}.
As the other Bayesian solutions, we may employ the posterior means against the above hierarchical priors (2,�,6−1)

and (2,4,6−1),

δPM =

{
Eπ(2,�,6−1|X,S)[2] ifm < p,
Eπ(2,4,6−1|X,S)[2] ifm ≥ p.

In Remarks of Sections 2 and 3, we state equivariance of δPM and the conditions for their minimaxity, which are extended
results of Lin and Tsai [13]. Section 4 gives the concluding remarks of this paper and an open problem in this research area.
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