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a b s t r a c t

The latent class mixture-of-experts joint model is one of the important methods for
jointlymodelling longitudinal and recurrent events datawhen the underlying population is
heterogeneous and there are nonnormally distributed outcomes. Themaximum likelihood
estimates of parameters in latent class joint model are generally obtained by the EM
algorithm. The joint distances between subjects and initial classification of subjects
under study are essential to finding good starting values of the EM algorithm through
formulas. In this article, separate distances and joint distances of longitudinal markers and
recurrent events are proposed for classification purposes, and performance of the initial
classifications based on the proposed distances and random classification are compared in
a simulation study and demonstrated in an example.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

In chronic disease clinical trials such as cancer and AIDS, it has become necessary and attractive to jointly model
longitudinal and survival data. One of the important methods that jointly model longitudinal and survival data is the latent
class joint model. Muthén and Shedden [1] and Lin et al. [2] proposed a fully parametric latent class mixture model to
describe different patterns of a longitudinal marker and a binary event outcome in a setting of complete follow-up. Lin
et al. [3] adopted a semiparametric latent class mixture joint model of marker trajectory and censored survival event time.
Lin et al. [4] applied the latent class mixture joint model to link subject visit patterns to homeless outcomes through latent
classes in a health service research study. Han et al. [5] studied a latent class joint model of a longitudinal biomarker and
intervened recurrent events under a parametric setting.
Expectation andmaximization steps of EM [6] estimation of parameters in the latent jointmodel were addressed in [3,5],

and starting values for EMestimation of latent class jointmodelwere investigated byHan et al. [7]. Initial values of parameter
estimates are essential to the convergence and speed of the EM algorithm. But the initial classification of the joint data is
closely related to the initial values of the EM algorithm. The initial classification not only affects the time to convergence, but
also the converged parameter values and the percentage of the convergence. Just like Newton–Raphson algorithm, initial
classification and starting values can guide the direction of the EM iteration procedure and determine its success, which is
especially true in the setting of multivariate model and high-dimensional data.
This article is organized as follows. Section 2 describes the latent class joint model. Section 3 presents the observed

and complete-data likelihood functions. Section 4 proposes separate and joint distances and cluster analysis methods. In
Section 5, we conduct a simulation study to make comparison of distance-based initial classification with random initial
classification, and apply the separate and joint distances and cluster analysis methods to an example. We conclude with a
discussion in Section 6. The details of EM computation are given in the Appendix.
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2. Model specification

Latent class joint model premises on the existence of a small number K , of latent classes, such that each class represents
a pattern of recurrent events that is associated with the pattern of a longitudinal marker. There are three components in the
latent class joint model: a class membership submodel, a longitudinal marker submodel, and an intervened recurrent event
submodel. The recurrent events and longitudinal marker are assumed to be independent given the latent class to which a
subject belongs.
Assume that there are n subjects, K latent classes, and l covariates in the class membership submodel. The latent class

vector ci = (ci1, . . . , ciK ) has a multinomial distribution with cik the indicator variable for subject i in class k. The probability
P(cik = 1) that subject i falls into class k, is modeled through a multinomial logit model that consists of the covariate vector
vi = (vi1, . . . , vil)

T and associated class-specific coefficient vector ηk with η1 = 0:

πik = P(cik = 1) =
exp(vTi ηk)
K∑
j=1
exp(vTi ηj)

, k = 1, . . . , K . (1)

Each latent class has its own path of longitudinal outcome. Suppose we have ni number of marker observations for subject
i, p number of common fixed effect covariates, q number of class-specific fixed covariates, and r number of subject-specific
random covariates. The longitudinal marker yi for subject i is postulated to follow a heterogeneous random effects model
given by

yi = Xiβ +Wi(Mci)+ Zibi + εi (2)
where (yi)ni×1 = (yi1, . . . , yini)

T is the vector of marker readings for subject i, (Xi)ni×p is the matrix of fixed effect
covariates, (β)p×1 is the vector of fixed effects, (Wi)ni×q is the matrix of class-specific effect covariates, often Wi = Zi,
(M)q×K = (µ1, . . . , µK ) is the matrix of K class effects, with Mci = µk if cik = 1, (Zi)ni×r is the matrix of random effect
covariates, (bi)r×1 ∼ N(0,D) is the vector of randomeffects, and (εi)ni×1 ∼ N(0, σ

2Ini) is the vector of residuals uncorrelated
with bi. Model (2) captures the average longitudinal profile within a subpopulation through latent classes while allowing
the flexibility among subjects in the same class through random effects.
Each latent class has its own pattern of recurrent events and intervention mode as well. Let NĎ

i (s) =
∑
∞

j=1 I(Sij ≤ s)
be the number of event occurrences observed over [0, s], RĎi (s) = I(s ≤ τi) be the at-risk indicator at time s, xi(s) be the
possibly time-dependent covariate for subject i. Denote the jth calendar time of the occurrence of event for the ith subject
by Sij, and the censoring or monitoring time for the ith subject by τi. The multiplicative intensity recurrent events model is
given by

δi(s|cik = 1, ωi) = ωiR
Ď
i (s)λ

0
k(Ei(s))ρ(N

Ď
i (s−), αk)ψ(γ

Txi(s)), (3)

where λ0k(·) is an unspecified class-specific baseline intensity, Ei(s) is the effective age of the subject i at calendar time s [8,5],
NĎ
i (s−) is the number of accumulated events just before time s, ρ(j, α) with ρ(0, α) = 1 is the event accumulation effect
function of known form, often taking the form of ρ(j, α) = αj, ψ(·) is a nonnegative link function of known form, and ωi
is the unobservable and identifiable frailty variable which is assumed to be gamma distributed with mean 1 and variance
θ . Model (3) reflects the potential subpopulation patterns of recurrent events while accounting for the dependence among
recurrent events arising from the same subject.

3. Estimation

We assume that the unobserved class-specific baseline hazard governing the counting process model for the recurrent
event is parametrically specified such as a Weibull distribution, and use a maximum likelihood method to estimate the
parameters in the joint model. Let Φ = (η, β,M,D, σ 2, θ, ξ , α, γ ) be the parameters in the joint model, Hi = (vi, Xi,
Wi, Zi, xi) be all the covariates for subject i, and [A|B] be a generic symbol for a conditional density of A given B, the log-
likelihood of the observed data {yi,N

Ď
i (s), R

Ď
i (s),Hi : s ≤ τi}, or simply {yi,N

Ď
i , R

Ď
i ,Hi}, can be written as

lo =
n∑
i=1

log
K∑
k=1

[cik = 1|Hi][yi|cik = 1,Hi][N
Ď
i , R

Ď
i |cik = 1,Hi] (4)

where [cik = 1|Hi] is given by (1), [yi|cik = 1,Hi] is a multivariate normal density with mean Xiβ +Wiµk and covariance
ZiDZTi + σ

2Ini , and [N
Ď
i , R

Ď
i |cik = 1,Hi] is given by [9]

[NĎ
i , R

Ď
i |cik = 1,Hi] =

∏
t∈[0,τi]

[(1+ θNĎ
i (t−))R

Ď
i (t)aik(t)]

dNĎi (t)

[1+ θ
∫ τi
0 R

Ď
i (t)aik(t)dt]

θ−1+NĎi (τi)
. (5)

Due to the missingness of the latent class membership ci, the random effect bi in the longitudinal marker submodel, and
the frailty ωi in the recurrent event, the observed data log-likelihood is hard to deal with. Instead we will work with the
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