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a b s t r a c t

We consider inverse regression models with convolution-type operators which mediate
convolution on Rd (d ≥ 1) and prove a pointwise central limit theorem for spectral
regularisation estimators which can be applied to construct pointwise confidence regions.
Here,we copewith the unknownbias of such estimators by undersmoothing.Moreover,we
prove consistency of the residual bootstrap in this setting and demonstrate the feasibility
of the bootstrap confidence bands at moderate sample sizes in a simulation study.
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1. Introduction

Suppose that we have observations (zk, Yk), k = (k1, . . . , kd) ∈ {−n, . . . , n}d, from the model

Yk = g(zk)+ εk, (1)

where g = Ψ ∗ θ is a one-to-one convolution operator with a function Ψ , the zk =
(
k1
nan
, . . . ,

kd
nan

)
are fixed design points,

the εk’s are i.i.d. errors with Eεk = 0, Eε2k = σ
2 (k = (k1, . . . , kd)), and an is a sequence which converges asymptotically to

zero. The observable signal g can be represented as the image of the signal θ under the operator

(Kθ)(z) =
∫

Rd
Ψ (z − t)θ(t)dt.

Recovery of the signal θ from the data (zk, Yk) in model (1) is a statistical inverse problem (e.g. [1,2]) which is closely related
to density deconvolution (e.g. [3–5]). It is usually assumed in nonparametric deconvolution regression models (e.g. [6])
that the function θ is periodic (say on [0, 1]), and that A is thus a convolution operator on [0, 1] with periodic Ψ which is,
however, often unrealistic in practice. Examples are the deconvolution of astronomical and biological images from telescopic
and microscopic imaging devices which involves deconvolution, but where the signal is usually not periodic. In this paper
we will discuss the estimation of the signal θ frommodel (1), which appears to be more appropriate in this context. A main
difficulty in this situation is that the reconstruction of θ from g = Kθ at any location x on the real line requires (at least
asymptotically) information on g on the full real line. We therefore use a design which includes an additional sequence
an → 0 to ensure that the design points zk will asymptotically exhaust Rd.
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In this paper we discuss pointwise convergence properties of Fourier-based estimators in model (1). The estimator
and some useful assumptions are introduced in Section 2. Asymptotic normality and confidence intervals are discussed in
Section 3 and a bootstrap version of the confidence intervals in Section 4. Whereas it is known that asymptotic confidence
intervals do not perform well for moderate sample sizes (e.g. [7], in the direct density estimation context, and [8], for
uniformconfidence bands in density deconvolution),wedemonstrate a satisfactory performance of the bootstrap confidence
intervals in a simulation study in Section 5. Finally, in order to keep the paper more readable, all proofs are deferred to the
Appendix.

2. Prerequisites: Estimator, notation and assumptions

Notation. In the following, we consider the jth derivative of a function or estimator θ̂n(x), which depends on a d-variate
covariable x. By the jth derivative j = (j1, . . . , jd)wedenote the partial derivative ∂ j/∂x

j1
1 · · · ∂x

jd
d , where j = j1+· · ·+jd, and

we suppose j1, . . . , jd to be such that j ≤ p, where θ has partial derivatives of order p which are all continuous. Moreover,
ωj, where ω ∈ Rd, means ωj11 · · ·ω

jd
d .

The estimator. We consider a Fourier estimator which is based on the Fourier transform Φk of some kernel function k,
which causes the regularisation of the estimator. To this end we make the following regularity assumptions on the Fourier
transformΦk.

Assumption 1. The Fourier transform Φk of k is symmetric and supported on [−1, 1]d with Φk(ω) = 1 for ω ∈ [−b, b]d,
b > 0, and |Φk(ω)| ≤ 1 for all ω ∈ [−1, 1]d.

The estimator is now defined as

θ̂ (j)n (x) = θ̂
(j)
n,h(x) =

1
(2π)d

∫
Rd
(−iω)je−i〈ω,x〉Φk(hω)

Φ̂g(ω)

ΦΨ (ω)
dω, 0 ≤ j ≤ p. (2)

Here h > 0 is a smoothing parameter called the bandwidth, and Φ̂g is the empirical Fourier transform of g defined by

Φ̂g(ω) =
1
Nadn

∑
r∈{−n,...,n}d

Yrei〈ω,zr〉,

where N = nd.
The estimator θ̂ (j)n can be written in kernel form as follows:

θ̂ (j)n (x) =
1

Nhj+dadn

∑
r∈{−n,...,n}d

YrK (j)n

(
x− zr
h

)
,

where the kernel

K (j)n (x) =
1

(2π)d

∫
Rd
(−iω)je−i〈ω,x〉

Φk(ω)

ΦΨ (ω/h)
dω, 0 ≤ j ≤ p,

depends on n through h. The effective kernel Kn(j) depends on the kernel function k, which determines the damping of the
contribution of the estimated Fourier transform of θ (j) at large frequencies to the estimator. This results in a regularisation
of the estimator which is required since Φ̂g is dominated by noise at large frequencies where the Fourier transformΦg of g
decays to zero. In more detail, θ̂ (j)n is closely related to the spectral-cut-off estimator, which would result inΦk the indicator
function on [−1, 1]. Wemention that in the time domain, the smoothed spectral-cut-off estimator which is used here yields
a kernel estimator with ‘‘flat-top’’ kernels [9].
Hence, the estimator f̂n(x)may be written as

θ̂ (j)n (x) =
∑

r∈{−n,...,n}d
Yr

1
Nhj+dadn

K (j)n

(
x− zr
h

)
=

∑
r∈{−n,...,n}d

Yrwj,r,n(x),

with weights

wj,r,n(x) =
1

Nhj+dadn
K (j)n

(
x− zr
h

)
. (3)

Further assumptions. We will make the following common assumptions on Φk and Ψ . Our first assumption is that Ψ is
ordinary smooth, i.e. we consider mildly ill-posed problems in model (1).
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