
Journal of Multivariate Analysis 102 (2011) 349–362

Contents lists available at ScienceDirect

Journal of Multivariate Analysis

journal homepage: www.elsevier.com/locate/jmva

On linear models with long memory and heavy-tailed errors
Zhou Zhou ∗, Wei Biao Wu
University of Toronto, Canada
University of Chicago, United States

a r t i c l e i n f o

Article history:
Received 18 October 2007
Available online 22 September 2010

AMS subject classifications:
62J05
60G18
60G51

Keywords:
Bahadur representation
Heavy tails
Long memory
M-estimation

a b s t r a c t

We consider the robust estimation of regression parameters in linear models with long
memory and heavy-tailed errors. Asymptotic Bahadur-type representations of robust
estimates are developed and their limiting distributions are obtained. It is shown that
the limiting distributions are very different from those obtained under short memory.
A simulation study is carried out to compare the performance of various asymptotic
representations.
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1. Introduction

The estimation of unknown regression parameters in linear models has been extensively studied. The least squares
estimate (LSE) is widely used in practice and its finite and asymptotic distribution theory has been well developed; see
for example the texts by Davidson and MacKinnon [11] and Rao and Toutenburg [26]. For linear models with heavy-tailed
errors, the LSE may perform poorly and robust estimates are attractive alternatives. The last three decades have witnessed
a rapid growth in quantile estimation and other robust procedures. See [17,14,19] for excellent treatments.

Consider the p-variate linear model:

yi = xTi β + ei, i = 1, 2, . . . , n, (1)

whereAT denotes thematrix transpose, and xi = (xi1, xi2, . . . , xip)T , 1 ≤ i ≤ n, are p×1 knowndeterministic design vectors.
As a typical robust estimation procedure, let ρ be a convex function and we estimate the unknown parameter vector β by
the minimizer

β̂n = argmin
β∈Rp

n−
i=1

ρ(yi − xTi β). (2)

Note that, ρ(u) = u2 leads to LSE. Other popular choices of ρ include quantile regression with ρ(x) = αx+ + (1−α)(−x)+,
0 < α < 1, where x+ = max(0, x), Huber’s procedure [17]with ρ(x) = (x21{|x| > c})/2+(cx−c2/2)1{|x| ≤ c}, c > 0, and
Lq regressionwith ρ(x) = |x|q, 1 ≤ q ≤ 2. In the literature, asymptotic properties of β̂n−β have been studiedmainly under
the assumption that the errors are independent (Bassett and Koenker [5], Babu [3], Bai et al. [4] and He and Shao [15] among
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others) or strong mixing [13,23,10] or short-range dependent [33]. See the latter paper for additional references for robust
estimation under independence and weak dependence. Hampel et al. [14] argued that many science and engineering data
exhibit significant temporal dependence and the assumption of independence is violated; see Chapter 8 therein. However,
there seem to be few results on robust estimators of linear models with long memory (or long-range dependent) errors.

Recently processes with both heavy tails and long memory have received considerable attention. Willinger et al. [32]
showed that self-similarity and heavy tails exist in network traffic data, while Rachev and Mittnik [25] did an extensive
empirical study and showed that high frequency asset return data exhibited both long memory and heavy tails. To the
best of our knowledge, most of the existing results focused on estimation and inference of long memory and heavy-tail
parameters, while little attention was paid to regression analysis. The latter problem is clearly of great interest if one wants
to include covariates or predictors into the model for explanatory purpose.

The paper aims to study properties of β̂n under the assumption that the errors ei in model (1) are long memory as well
as heavy tailed; see Section 2.1 for assumptions on the error structure. It is shown that asymptotic behavior of β̂n is very
different from that obtainedunder independence andweakdependence.Wewill also provideBahadur representations of the
robust estimates of model (1). Those representations are useful for further analysis of the asymptotics of robust estimates.

The rest of the paper is structured as follows. Regularity conditions are given in Section 2. Section 3 presents main results
including consistency and asymptotic distributions of robust estimates. Section 5 provides proofs and Section 4 presents a
simulation study.

2. Preliminaries

We now introduce some notation. For a vector v = (v1, . . . , vp) ∈ Rp, let |v| = (
∑p

i=1 v
2
i )

1/2. For a p× pmatrix A, define
|A| = sup{|Av| : |v| = 1}. For a random vector V, write V ∈ Lq (q > 0) if ‖V‖q := [E(|V|

q)]1/q < ∞. Let (ηn) be a sequence
of random variables and (dn) a positive sequence. We write ηn = op(dn) if ηn/dn → 0 in probability and ηn = Op(dn) if
ηn/dn is bounded in probability. Denote by ⇒ the weak convergence. Let C i, i ∈ N, be the collection of functions that have
ith order continuous derivatives. Let C denote a generic constant independent of n and its value may vary from place to
place.

2.1. The error structure

We assume that (ei) is a moving average process

ei =

∞−
j=0

ajεi−j, (3)

where εj, j ∈ Z, are independent and identically distributed (iid) random variables with mean 0 and εj ∈ D(α), α ∈ (1, 2).
Here D(α) denotes the α-stable domain of attraction (see [9]); namely, there exists real sequences (An) and (Bn) such that
A−1
n (ε1 + · · · + εn)− Bn converges to an α-stable law whose characteristic function is

ϕ(t) = exp(−σ α|t|α(1 −
√

−1ϱwα(t))+
√

−1µt), wherewα(t) = tan
παsgn(t)

2
. (4)

Here σ , µ and ϱ (−1 ≤ ϱ ≤ 1) are the scale, shift and skewness parameters, respectively, and
√

−1 is the imaginary unit.
Let Fε be the distribution function of εj and fε = F ′

ε be its density. Then εj ∈ D(α) can be characterized by

1 − Fε(u) =
c1 + o(1)

uα
L(u) and Fε(−u) =

c2 + o(1)
uα

L(u) as u → ∞, (5)

where c1, c2 ≥ 0, c1 + c2 > 0 and L is a slowly varying function, i.e., limx→∞ L(tx)/L(x) = 1, for all t > 0 (cf. [7]). It is easy
to see that inf{x : P(|εi| > x) ≤ 1/n} = n1/αL1(n), where L1 is also a slowly varying function. Observe that εi ∈ Lα′

, for all
α′

∈ (0, α), and α is called the heavy-tail index, and E(ε2i ) = ∞. If ϱ = µ = 0, then (4) becomes the symmetric-α-stable
(SαS) law. In this case (5) holds with L(t) = 1, c1 = c2 = σ α/(2Cα), where Cα = cos(απ/2)Γ (2 − α)/(1 − α).

Let εα(u), u ∈ R, be a two-sided Levyα-stable process [28]with independent increments, εα(0) = 0, and εα(u+t)−εα(u)
having characteristic function ϕ(t) (cf. (4)) with µ = 0. By Theorem 2.7 in [29], in the space D[0, 1] of functions that are
right continuous and have left limit, we have the weak convergence

lim
n→∞


1

n1/αL1(n)

⌊nu⌋−
i=1

εi, 0 ≤ u ≤ 1


= {εα(u), 0 ≤ u ≤ 1}, (6)

where ⌊v⌋ = max{j ∈ Z : j ≤ v}. See also [2].
For the coefficients (aj)∞0 , we assume a0 = 1, and, for j ≥ 1,

aj = j−γ l(j), 1/α < γ < 1, where l(·) is a slowly varying function. (7)
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