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a b s t r a c t

The class of dual φ-divergence estimators (introduced in Broniatowski and Keziou
(2009) [5]) is exploredwith respect to robustness through the influence function approach.
For scale and location models, this class is investigated in terms of robustness and
asymptotic relative efficiency. Some hypothesis tests based on dual divergence criteria are
proposed and their robustness properties are studied. The empirical performances of these
estimators and tests are illustrated by Monte Carlo simulation for both non-contaminated
and contaminated data.
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1. Introduction

Minimum divergence estimators and related methods have received considerable attention in statistical inference
because of their ability to reconcile efficiency and robustness. Among others, Beran [3], Tamura and Boos [24], Simpson
[22,23] and Toma [25] proposed families of parametric estimators minimizing the Hellinger distance between a non-
parametric estimator of the observations density and themodel. They showed that those estimators are both asymptotically
efficient and robust. Generalizing earlier work based on the Hellinger distance, Lindsay [18], Basu and Lindsay [2], and
Morales et al. [19] have investigated minimum divergence estimators, for both discrete and continuous models. Some
families of estimators based on approximate divergence criteria have also been considered; see Basu et al. [1].

Broniatowski and Keziou [5] have introduced a new minimum divergence estimation method based on a dual
representation of the divergence between probability measures. Their estimators are defined in a unified way for both
continuous and discrete models. They do not require any prior smoothing and include the classical maximum likelihood
estimators as a benchmark. A special case for the Kullback–Leibler divergence is presented in Broniatowski [4]. The present
paper presents robustness studies for the classes of estimators generated by the minimum dual φ-divergence method, as
well as for some tests based on corresponding estimators of the divergence criterion.

We give general results that allow us to identify robust estimators in the class of dual φ-divergence estimators. We
apply this study to the Cressie–Read divergences and state explicit robustness results for scale models and location models.
Gains in robustness are often paid for by some loss in efficiency. This is discussed for some scale and location models. Our
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main remarks are as follows. All the relevant information pertaining to the model and the true value of the parameter to be
estimated should be used in order to define, when possible, robust and fairly efficient procedures. Some models allow for
such procedures. The example provided by the scale normal model shows that the choice of a good estimation criterion is
heavily dependent on the acceptable loss in efficiency, for achieving a compromise with the robustness requirement. When
sampling under themodel is overspread (typically for Cauchy and logisticmodels), not surprisingly themaximum likelihood
estimator is both efficient and robust and therefore should be preferred (see Section 3.2).

On the other hand, these estimation results constitute the premises for constructing some robust tests. The purpose of
robust testing is twofold. First, the level of a test should be stable under small arbitrary departures from the null hypothesis
(i.e. robustness of validity). Second, the test should have a good power under small arbitrary departures from specified
alternatives (i.e. robustness of efficiency). To control the test stability against outliers in the aforementioned senses, we
compute the asymptotic level of the test under a sequence of contaminated null distributions, as well as the asymptotic
power of the test under a sequence of contaminated alternatives. These quantities are seen to be controlled by the influence
function of the test statistic. In this way, the robustness of the test is a consequence of the robustness of the test statistic
based on a dual φ-divergence estimator. Inmany cases, this requirement is met when the dual φ-divergence estimator itself
is robust.

The paper is organized as follows. In Section 2 we present the classes of estimators generated by the minimum dual φ-
divergence method. In Section 3, for these estimators, we compute the influence functions and give the Fisher consistency.
We particularize this study for the Cressie–Read divergences and state robustness results for scale models and location
models. Basic examples (normal scale with known location, Cauchy or logistic location under known scale) are handled in
order to shed light on robustness properties of the estimates. Section 4 is devoted to hypothesis testing. We give general
convergence results for contaminated observations and use them to compute the asymptotic level and the asymptotic power
for the tests that we propose. In Section 5, the performances of the estimators and tests are illustrated by Monte Carlo
simulation studies. In Section 6 we briefly present a proposal for the adaptive choice of tuning parameters.

All the proofs are included in the technical report [27].

2. Minimum divergence estimators

2.1. Minimum divergence estimators

Let ϕ be a non-negative convex function defined from (0,∞) onto [0,∞] and satisfying ϕ(1) = 0. Also extend ϕ to 0,
defining ϕ(0) = limx↓0 ϕ(x). Let (X,B) be a measurable space and P be a probability measure (p.m.) defined on (X,B).
Following Rüschendorf [21], for any p.m.Q absolutely continuous (a.c.) w.r.t. P , theφ-divergence betweenQ and P is defined
by

φ(Q , P) :=

∫
ϕ


dQ
dP


dP. (1)

When Q is not a.c. w.r.t. P , we set φ(Q , P) = ∞. We refer the reader to Liese and Vajda [16] for an overview on the origin
of the concept of divergence in statistics.

A commonly used family of divergences is the so-called ‘‘power divergences’’, introduced by Cressie and Read [9] and
defined by the class of functions

x ∈ R∗

+
→ ϕγ (x) :=

xγ − γ x + γ − 1
γ (γ − 1)

(2)

for γ ∈ R\ {0, 1} and ϕ0(x) := − log x+ x−1, ϕ1(x) := x log x− x+1 with ϕγ (0) = limx↓0 ϕγ (x), ϕγ (∞) = limx→∞ ϕγ (x),
for any γ ∈ R. The Kullback–Leibler divergence (KL) is associated with ϕ1, the modified Kullback–Leibler divergence (KLm)
with ϕ0, the χ2 divergence with ϕ2, the modified χ2 divergence (χ2

m) with ϕ−1 and the Hellinger distance with ϕ1/2.
Let {Pθ : θ ∈ Θ} be some identifiable parametric model with Θ a subset of Rd. Consider the problem of estimation of

the unknown true value of the parameter θ0 on the basis of an i.i.d. sample X1, . . . , Xn with p.m. Pθ0 .
When all p.m. Pθ share the same finite support S which is independent of the parameter θ , the φ-divergence between Pθ

and Pθ0 has the form

φ(Pθ , Pθ0) =

−
j∈S

ϕ


Pθ (j)
Pθ0(j)


Pθ0(j).

For this case, Liese and Vajda [17], Lindsay [18] and Morales et al. [19] investigated the so-called ‘‘minimum φ-divergence
estimators’’ (minimum disparity estimators in [18]) of the parameter θ0 defined by

θn := arg inf
θ∈Θ

φ(Pθ , Pn), (3)
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