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a b s t r a c t

Semiparametric random censorship (SRC) models (Dikta, 1998) provide an attractive
framework for estimating survival functionswhen censoring indicators are fully or partially
available. When there are missing censoring indicators (MCIs), the SRC approach employs
a model-based estimate of the conditional expectation of the censoring indicator given the
observed time, where the model parameters are estimated using only the complete cases.
The multiple imputations approach, on the other hand, utilizes this model-based estimate
to impute the missing censoring indicators and form several completed data sets. The
Kaplan–Meier and SRC estimators based on the several completed data sets are averaged
to arrive at the multiple imputations Kaplan–Meier (MIKM) and the multiple imputations
SRC (MISRC) estimators. While the MIKM estimator is asymptotically as efficient as or less
efficient than the standard SRC-based estimator that involves no imputations, here we
investigate the performance of theMISRC estimator andprove that it attains the benchmark
variance set by the SRC-based estimator. We also present numerical results comparing the
performances of the estimators under severalmisspecifiedmodels for the abovementioned
conditional expectation.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

There are two important approaches for estimating survival functions from right censored data. The nonparametric and
most popular approach leads to the Kaplan–Meier (KM) or product limit estimator, which has several appealing properties
such as asymptotic efficiency [27]. An alternative approach is based on semiparametric random censorship (SRC)models [3]
and leads to an estimator of the survival function with asymptotic variance not greater than that of the KM estimator, and
potentially even smaller. The efficacy of the SRC approach, however, is rooted in the basic premise that the correct model
be specified for the conditional expectation of the censoring indicator given the observed, possibly censored, event time—
since, otherwise, the estimator would be inconsistent. When the censoring indicators are always available, therefore, the
choice between the two approaches may present an intriguing dilemma as it represents a fundamental trade-off between
semiparametric efficiency and nonparametric ‘‘robustness’’—the KMestimator is consistent, if less efficient than the possibly
inconsistent SRC estimator.When there areMCIs, however, theKMestimator is inapplicable, and the ‘‘robustness’’ advantage
of nonparametric approaches is perhaps neutralized by the need for smoothing, requiring the specification of data-based
optimal bandwidths for computing the estimator [24,17,20,22]. Apart from the effort needed to choose a suitable model,
the SRC approach has no such frailties, which may well be a significant advantage when there are MCIs [19].

The approach of multiple imputations is useful when there are missing data [10,11,26,8,23,13,21]. In this approach,
the missing components are filled in with imputed values and parameter estimates are obtained from the completed data
set, treating the imputed values as though they were actually observed. Estimates from multiple completed data sets are
combined in some natural way, such as averaging, to further improve their precision. Kim [7] investigated the finite sample
properties of multiple imputations estimators while Schenker and Welsh [12] derived asymptotic results.
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In this article, we focus on multiple-imputations-based estimation of a survival function from right censored data with
MCIs. For right censorship without MCIs, the observed random variables are X and δ, where X = min(T , C), δ = I(T ≤ C)
is the censoring indicator, T is the lifetime of interest, and C is an independent censoring variable. Dikta [3] introduced SRC
models, by proposing model-based estimation of the conditional expectation E(δ|X = t) = p(δ = 1|X = t) = p(t) and
proved that, when the model for p(t) was correctly specified, the SRC estimator of S(t), the survival function of T , was as
efficient as or more efficient than the KM estimator. The data for the MCI model of random censorship are {(Xi, ξi, σi)1≤i≤n},
where ξi = 1 when δi is observed and is 0 otherwise, and σi = ξiδi. Subramanian [19] proved that the SRC estimator for
the MCI model, denoted by ŜD(t), was as efficient as or more efficient than nonparametric estimators. Subramanian [21]
investigated a multiple-imputations-based KM estimator (referred to henceforth as the MIKM estimator), defined as the
average of many single imputation KM estimators, and proved that the MIKM estimator was asymptotically less efficient
than ŜD(t). Naturally, the question arises as to whether there are alternative multiple imputations estimators which are
better than theMIKM estimator, and whether they would attain the existing benchmark variance set by the estimator ŜD(t).
We address this issue by proposing the multiple-imputations-based SRC estimator, called the MISRC estimator, and derive
its asymptotic distribution.

Note that ŜD(t) is computed without recourse to any imputations. To obtain the model-based estimate of p(t) used
for computing ŜD(t), we choose a suitable good-fitting model p(t, θ) (from candidates such as logit, probit, generalized
proportional hazards, among others; see [3]) and estimate themodel parameter θ ∈ Rk by usingmaximum likelihood based
on only the complete cases.Wedenote themaximum likelihood estimator (MLE) by θ̂D. Estimating θ in thisway still produces
a consistent estimate under the assumption that the MCIs are missing at random (MAR; see [8,23], or Subramanian [19]).
Note that MAR implies that P(ξ = 1|X = t, δ = d) = P(ξ = 1|X = t) = π(t) (Rubin [9]), and also means that,
conditional on X , the missingness and censoring indicators are independent: P(σ = 1|X = t) = π(t)p(t). The multiple
imputations approach involves using the estimated conditional probability p(t, θ̂D) to impute missing δ, to form M ≥ 1
completed data sets, and then computing the SRC estimator, denoted by Ŝ(m)(t). The average of theM single imputation SRC
estimates Ŝ(m)(t),m = 1, . . . ,M , provides the MISRC estimator, to be denoted henceforth by Ŝ(t). Lu and Tsiatis [8], and
Tsiatis et al. [23] implemented this method for competing risks with covariates and missing cause of failure information.
We prove that when the model for p(t) is specified correctly, the MISRC estimator Ŝ(t) is asymptotically equivalent to the
SRC estimator ŜD(t) and hence asymptotically as efficient as or more efficient than the MIKM estimator. We also carried out
several numerical studies to compare the performance of the estimators when p(t)was misspecified. The MIKM was more
robust to misspecification.

Significantly, the multiple imputations procedure has connections with themodel-based resampling introduced by Dikta
et al. [4] for model checking in the context of binary data. Dikta et al. [4] prescribe the following recipe for standard right
censored data (that is, when there are no MCIs): Resample all the censoring indicators, on the basis of the estimated model
p̂D(t) = p(t, θ̂D). Dikta andWinkler [5] implemented the extension to MCI data, resampling only the non-missing censoring
indicators. In contrast, the model-based resampling implicit in our multiple imputations procedure entails resampling (imputing)
only the MCIs. We do not resample (impute) the non-missing censoring indicators.

The rest of the article is organized as follows. In Section 2, we derive the asymptotic distribution of the MISRC estimator.
In Section 3, we present several numerical results comparing the SRC, MIKM, and MISRC estimators. Section 4 focuses on
some discussion and conclusions. Technical complements are included in an Appendix.

2. Multiple-imputations estimation

Some of the notation below is from Dikta [3]. Specify a parametric model for p(t) through p(t) = p(t, θ), where p(·) is
known up to the k-dimensional parameter θ . Define

q(t, θ) = log p(t, θ), q̄(t, θ) = log(1 − p(t, θ)).
Let θ0 denote the true value of θ and define p0(t) = p(t, θ0), q0(t) = q(t, θ0), and q̄0(t) = log(1 − p0(t)). Note that
q0(t) = log p0(t). Write Dr(p(t, θ)) for the partial derivative of p(t, θ) with respect to θr ; when it is evaluated at θ = θ∗,
denote it byDr(p(t, θ∗)). Write Grad(p(t, θ)) = [D1(p(t, θ)), . . . ,Dk(p(t, θ))]T and Cθ (t) = Grad(p(t, θ)) (Grad(p(t, θ)))T .
When θ = θ0, we denote the matrix Cθ0(t) by C0(t). Define the information matrices

I(θ0)
.
= I0 = E


C0(X)

p0(X)(1 − p0(X))


, J(θ0)

.
= J0 = E


π(X)C0(X)

p0(X)(1 − p0(X))


.

Note that the (r, s) elements of I0 (the case of no MCIs) and J0 (the case with MCIs) are given by

ir,s = E

Dr(p0(X))Ds(p0(X))
p0(X)(1 − p0(X))


, jr,s = E


π(X)Dr(p0(X))Ds(p0(X))

p0(X)(1 − p0(X))


. (1)

Also, write α(u, v) = (Grad(p0(u)))T J−1
0 Grad(p0(v)). We denote the second-order partial derivatives by Dr,s(·). We will

need the following assumptions (cf. Dikta et al. [4]):
(A1) The functions Dr,s(q(t, θ)) and Dr,s(q̄(t, θ)) are continuous with respect to θ at each θ ∈ D ⊂ Rk and t ∈ R. Also,

the functions Dr(q(·, θ)), Dr(q̄(·, θ)), Dr,s(q(·, θ)) and Dr,s(q̄(·, θ)) are measurable for each θ ∈ D , and there exists a
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