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a b s t r a c t

We study the degrees of freedom in shrinkage estimation of regression coefficients.
Generalizing the idea of the Lasso,we consider the problemof estimating the coefficients by
minimizing the sum of squares with the constraint that the coefficients belong to a closed
convex set. Based on a differential geometric approach, we derive an unbiased estimator
of the degrees of freedom for this estimation method, under a smoothness assumption on
the boundary of the closed convex set. The result presented in this paper is applicable to
estimation with a wide class of constraints. As an application, we obtain a Cp type criterion
and AIC for selecting tuning parameters.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

In recent years, there has been considerable attention on shrinkage methods in estimating the coefficients of a linear
model. Compared with the ordinary least squares (OLS), shrinkage methods often improve the prediction accuracy. In
addition, if the constraint set towards which the estimator is shrunk has edges or corners, some coefficients can be set
exactly equal to zero.
To be precise, suppose y = (y1, . . . , yn)′ is the response vector and xj = (x1j, . . . , xnj)′, j = 1, . . . , p are the covariates.

Let X = [x1 · · · xp] be the design matrix. We consider a linear model

y = Xβ + ε, (1.1)
where β = (β1, . . . , βp)′ is the coefficient vector and ε ∼ Nn(0, σ 2In). By centering the covariates if required, we assume
that the intercept term is not included in the above linear model.
A canonical example of shrinkage methods is the Lasso [1]. Let ‖ · ‖2 be the ordinary Euclidean norm: ‖z‖2 = (z ′z)

1
2 for

a vector z with appropriate dimension. The Lasso estimate is defined by an optimal solution of the following minimization
problem:

min
β
‖y− Xβ‖22 (1.2)

s.t. ‖β‖1 ≤ t,
or equivalently

min
β

{
‖y− Xβ‖22 + λ‖β‖1

}
, (1.3)

E-mail address: ee077006@mail.ecc.u-tokyo.ac.jp.

0047-259X/$ – see front matter© 2008 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmva.2008.12.002

http://www.elsevier.com/locate/jmva
http://www.elsevier.com/locate/jmva
mailto:ee077006@mail.ecc.u-tokyo.ac.jp
http://dx.doi.org/10.1016/j.jmva.2008.12.002


K. Kato / Journal of Multivariate Analysis 100 (2009) 1338–1352 1339

Fig. 1. The constraint sets of the Lasso (left) and the group Lasso (right).

where ‖β‖1 =
∑p
j=1 |βj|, t and λ are non-negative tuning parameters. The Lasso shrinks the coefficients towards zero

as t decreases or λ increases. An important feature of the Lasso is that, depending on the tuning parameter t or λ, some
coefficients are set exactly equal to zero. It should be noted that although (1.2) and (1.3) are equivalent as minimization
problems, the optimal solutions of these two problems are different as estimators since the correspondence between t and
λ generally depends on the data.
It is well recognized that the choice of the tuning parameter is a crucial part of shrinkage methods. As indicated by

Efron [2], the degrees of freedom plays an important role in selecting the tuning parameter. The degrees of freedom reflects
the model complexity controlled by the shrinkage and corresponds to the penalty term of model selection criteria such
as Mallows’ Cp [3] and Akaike’s information criterion (AIC, [4]). Recently, Zou et al. [5] show that, under the penalization
formulation (1.3), the number of non-zero coefficients is an unbiased estimator of the degrees of the freedom of the Lasso.
In this paper, we study the degrees of freedom for the estimation method formulated as

min
β
‖y− Xβ‖22 (1.4)

s.t. β ∈ K ,

where K ⊂ Rp is a closed convex set. The minimization problem (1.4) is a generalization of the Lasso and its variants. The
problem of selecting the tuning parameter is viewed as the problem of selecting the constraint set among a given collection
of closed convex sets. The main goal of this paper is to derive an unbiased estimator of the degrees of freedom for this
estimation method under both p ≤ n and p > n settings.
Suppose first that rank X = p (hence p ≤ n) and denote the OLS estimator by β̂0. Define the inner product 〈·, ·〉 in Rp by

〈u, v〉 = u′Vv, for u, v ∈ Rp (1.5)

where V = X ′X and let ‖ · ‖ =
√
〈·, ·〉. Note that the inner product 〈·, ·〉 here is not same as the ordinary Euclidean inner

product. Then, the minimization problem (1.4) can be rewritten as

min
β
‖β − β̂0‖ (1.6)

s.t. β ∈ K .

It is seen that the optimal solution β̂K of the problem (1.6) is given by the projection of β̂0 onto K . Since K is closed and
convex, β̂K is uniquely defined.
Herewe present illustrative examples of the constraint sets of the Lasso and the group Lasso. The left of Fig. 1 corresponds

to the Lasso constraint |β1|+|β2|+|β3| ≤ 1. The right one corresponds to the group Lasso constraint (β21+β
2
2 )
1
2 +|β3| ≤ 1.

To derive an unbiased estimator of the degrees of freedom, we utilize Stein’s lemma [6]. Stein’s lemma yields that an
unbiased estimator of the degrees of freedom is given by the divergence of µ̂K with respect to y, which coincides with the
divergence of β̂K with respect to β̂0. However, in general, the estimator β̂K cannot be expressed in an explicit form. Thus it
is often impossible to directly calculate the divergence.
To overcome this difficulty, we use an idea of the ‘‘tubal coordinates’’ [7]. From an approach similar to that of Kuriki and

Takemura [8],we derive the divergence of the projection ontoK in terms of geometric quantities under a regularity condition
on the boundary ∂K of K . Hence we obtain an unbiased estimator of the degrees of freedom of µ̂K , which is computable in
principle.
Next, we consider a more challenging situation: p > n case. When p > n, the OLS estimator is not uniquely defined.

Furthermore, in general, shrinkage estimators such as the Lasso estimator are not uniquely defined as functions of y.
However, the fitted model µ̂K = X β̂K is in fact always uniquely determined for a compact convex K where β̂K is any
optimal solution of (1.4), since µ̂K is the projection of y onto the closed convex set K̃ = {Xβ | β ∈ K}. Hence, it remains to
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