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a b s t r a c t

In this paper we consider the space of those probability distributions which maximize the
q-Rényi entropy. These distributions have the same parameter space for every q, and in
the q = 1 case these are the normal distributions. Somemethods to endow this parameter
spacewith a Riemannianmetric is presented: the second derivative of the q-Rényi entropy,
the Tsallis entropy, and the relative entropy give rise to a Riemannian metric, the Fisher
information matrix is a natural Riemannian metric, and there are some geometrically
motivated metrics which were studied by Siegel, Calvo and Oller, Lovrić, Min-Oo and Ruh.
These metrics are different; therefore, our differential geometrical calculations are based
on a newmetricwith parameters, which covers all the above-mentionedmetrics for special
values of the parameters, among others.We also compute the geometrical properties of this
metric, the equation of the geodesic linewith some special solutions, the Riemann and Ricci
curvature tensors, and the scalar curvature. Using the correspondence between the volume
of the geodesic ball and the scalar curvature we show how the parameter qmodulates the
statistical distinguishability of close points. We show that some frequently used metrics in
quantum information geometry can be easily recovered from classical metrics.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

In theoretical statistics, and in applications, the distance functions between probability distributions play an important
role. The construction of a proper distance function has been considered by several authors. But even the same statistical
model with different mathematical frameworks can lead to different distance functions. To narrow the family of potential
distance functions we consider those which are natural from a differential geometrical point of view.
Historically, the pioneering work of Mahalanobis [24] was generalized by Rao [31], who first suggested the idea of

considering the Fisher information [14] as a Riemannian metric on the space of probability distributions. Cencov [8] was
the first to study monotone metrics on statistical manifolds. He proved that, up to a normalization, there exists a unique
monotone metric, the Fisher information. Amari [3] and Amari and Nagaoka [4] provide modern account of the general
differential geometry that arises from the Fisher information metric. The Fisher metric was studied further by Akin [1],
James [16], Burbea [6], Mitchell [23], Atkinson and Mitchell [5], Skovgaard [35], Oller [26], Oller and Cuadras [28], and Oller
andCorcuera [27], among other researchers. The combination of differential geometrical and statistical studies helped to find
the statistical interpretation of geometrical quantities. For example, the geodesic distance between probability distributions,
which is usually known as the Rao distance, is a natural distance function between probability distributions; the statistical
meaning of the so-called e-curvature was first clarified by Efron [12]; the normalized volume measure of the manifold is
called Jeffreys’ prior [17] within the field of Bayesian statistics.
In this paper we consider the space of those probability distributions which maximize the q-Rényi entropy. These

distributions have the same parameter space for every q, and in the q = 1 case these are the normal distributions. The
first results about the geometrical properties of these spaces are due to Amari [3,2]. He considered the Fisher information
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metric on thesemanifolds and computed some geometrical invariants. Somemethods to endow the parameter space with a
Riemannianmetric are presented: the second derivative of the q-Rényi entropy [32], the Tsallis entropy [36], and the relative
entropy give rise to a Riemannian metric, the Fisher information matrix is a natural Riemannian metric, and there are some
geometrically motivated metrics which were studied by Siegel [34], Calvo and Oller [7] and Lovrić, Min-Oo and Ruh [33].
These metrics are different; therefore, our differential geometrical calculations are based on a newmetric with parameters,
which covers all the above-mentioned metrics for special values of the parameters, among others. We also compute the
geometrical properties of this metric, the equation of the geodesic line with some special solutions, the Riemann and Ricci
curvature tensors, and the scalar curvature. Using the correspondence between the volume of the geodesic ball and the
scalar curvature we show how the parameter q modulates the statistical distinguishability of close points. We show that
some frequently used metrics in quantum information geometry can be easily recovered from classical metrics.
The proofs of the presented theorems are in the Appendix.

2. q-Rényi entropy maximizing distributions

The normal distributions can be introduced as a result of the maximum entropy principle. Consider the family of density
functions which are continuous and supported on the real line with given expectation value µ ∈ R and variance σ 2 ∈ R+.
Introducing the Lagrange multipliers a, b, c , we have the following functional on the family of probability distributions:

S(ρ) = −
∫
ρ(x) log ρ(x) dx− a

(∫
ρ(x) dx− 1

)
− b

(∫
ρ(x)x dx− µ

)
− c

(∫
ρ(x)(x− µ)2dx− σ 2

)
.

The variation of the functional is

δS =
∫ (
− log ρ(x)− 1− a− bx− c(x− µ)2

)
δp(x) dx.

The functional has extremal point at ρ if its variation is zero. One can show that the entropy functional has a local maximum
at the point

ρ(x) = exp
(
−a− bx− c(x− µ)2

)
for appropriate parameters a, b, c ∈ R.
The family of one-dimensional normal distributions S1 can be parameterized by the expectation value u ∈ R and the

parameter d ∈ R+ as

f (d, u, x) =

√
d

√
2π
e−

1
2 d(x−u)

2
.

Thismeans that S1 canbe identifiedwith a two-dimensional spaceΞ1 = R+×R. The statistical properties of the distributions
lead us to define the Riemannian metric on the spaceΞ1.
In general, the family of n-dimensional normal distributions Sn can be parameterized by the expectation vector u ∈ Rn

and the inverse of the covariance matrix D. Let us denote the set of real symmetric strictly positive n × nmatrices byMn.
Then we can identify the sets Sn andΞn =Mn × Rn using the following one-to-one map:

Ξn → Sn (D, u) 7→ f (D, u, ·),

where

f (D, u, ·) : Rn → R x 7→

√
detD
√
(2π)n

exp
(
−
1
2
〈x− u,D(x− u)〉

)
.

Normal distributions with zero expectation will be said to be special normal distributions. The parameter space of the n-
dimensional special normal distribution isΞ (s)

n =Mn.
One can generalize the above-mentioned procedure to extend the notion of Gaussian distributions using the q-Rényi

entropy [32].

Definition 2.1. Let us fix a parameter q ∈ R+\{1} and consider a density function ρ. The q-Rényi entropy of the distribution
ρ is

Sq(ρ) =
1
1− q

log
∫

R
ρ(x)q dx

if the integral exists.
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