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a b s t r a c t

Several nonparametric methods are available in the literature to test the independence
between two random vectors. But, many of them perform poorly for high dimensional data
and are not applicable when the dimension of one of these vectors exceeds the sample size.
Moreover, most of these tests are not distribution-free in the general multivariate set up.
Recently, Heller et al. (2012) proposed a test of independence, which is distribution-free
and can be conveniently used even when the dimensions are larger than the sample size.
In this article, we point out some limitations of this test and propose somemodifications to
overcome them retaining its distribution-free property. Some simulated and real data sets
are analyzed to demonstrate the utility of our proposed modifications.

© 2016 Elsevier B.V. All rights reserved.
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where x and y are of dimensions p and q, respectively. Here, we want to test whether x and y are independent. Under
the assumption of normality of z, this is equivalent to test the uncorrelatedness between x and y. Based on this normality
assumption, one can construct the likelihood ratio test based on theWilks’Λ statistic (Wilks, 1935). Tests somewhat similar
to WilksΛ test are those based on Roy’s largest root, Hotelling–Lawley trace and Pillai–Bartlett trace. A power comparison
among these tests can be found in Pillai and Jayachandran (1967).

Several nonparametric tests have also been proposed in the literature, and they are often preferred over parametric tests
because of their flexibility and robustness. For the univariate case (i.e., p = q = 1), Blomqvist (1950) proposed a test based
on quadrant statistic. Distribution-free tests of independence based on empirical distribution function were developed in
Hoeffding (1948) and Blum et al. (1961). One can construct distribution-free tests based on Spearman’s ρ and Kendall’s τ
statistics (see e.g., Gibbons and Chakraborti (2011)) as well. In the multivariate case (i.e., p > 1 or q > 1), perhaps the
simplest among the nonparametric tests of independence are those based on co-ordinate wise signs and ranks (see e.g., Puri
and Sen, 1971). Gieser and Randles (1997) proposed a multivariate extension of the quadrant test based on interdirections.
Using spatial signs and ranks, Taskinen et al. (2003) and Taskinen et al. (2005) proposed multivariate extensions of the
tests based on Spearman’s ρ, Kendall’s τ and Blomqvist’s quadrant statistics. A summary of most of these multivariate
nonparametric tests can be found inOja and Randles (2004) andOja (2010). But, none of these abovementionedmultivariate
tests can be used when the dimension of either x or y exceeds the sample size. Moreover, none of them are distribution-free
in finite sample situations. In such cases, one either uses the test based on the large sample distribution of the test statistic
or the permutation test.
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Fig. 1. The complete graph G1 (or G2) and the minimal spanning tree T1 (or T2).

Nonparametric tests of independence that can be used for high dimension, low sample size data include Bakirov et al.
(2006), Székely et al. (2007) and Heller et al. (2013). These tests are consistent against general alternatives; but they are not
distribution-free in finite sample situations. In all these cases, the authors suggested to use conditional tests based on the
permutation principle.

Friedman and Rafsky (1983) was the first to construct some graph based tests of independence between two random
vectors of arbitrary dimensions. Following similar ideas, Heller et al. (2012) constructed amultivariate test of independence
(henceforth referred to as the HGH test) based on random traversals of minimal spanning trees (MST). Like Friedman and
Rafsky’s tests, the HGH test can be conveniently used even when the dimensions of the random vectors exceed the sample
size.Moreover, this test has the distribution-free property in finite sample situations. However, it is not above all limitations.
In the next section, we point out some shortcomings of theHGH test and propose somemodifications to overcome them. Our
modified tests retain the distribution-free property, and they can also be used in high dimension, low sample size situations.
Further, they usually yield better performance than the HGH test, which we will see in Section 2. In Sections 3 and 4, we
analyze some simulated and real data sets, respectively, to further demonstrate the utility of our proposedmodifications.We
also compare the performance of these proposed tests with some popular tests of independence. Finally, some concluding
remarks are given in Section 5.

2. HGH test and its modifications

Consider two edge weighted complete graphs G1 on x1, x2, . . . , xn and G2 on y1, y2, . . . , yn, where the observations
are taken as nodes and the Euclidean distance between two observations is taken as the weight associated with the edge
connecting them. Heller et al. (2012) first considered two minimal spanning trees T1 in G1 and T2 in G2. They chose one of
these trees at random (T1, say), performed a random traversal of its n−1 edges and computed the ranks of the corresponding
edges in the other graph (G2, say). A random traversal of T1 startswith a randomly chosen node v(1)11 ofG1, and at the first step,
it randomly selects one of the edges of T1 adjacent to v

(1)
11 to visit a new node v(1)12 . In each of the subsequent steps, it chooses

an edge of T1 adjacent to one of the visited nodes to visit a new node. Suppose that at the ith step (i = 1, 2, . . . , n − 1), it
chooses an edge ei = (v

(1)
i1 , v

(1)
i2 ) that connects an already visited node v(1)i1 with an unvisited node v(1)i2 . Let e′

i = (v
(2)
i1 , v

(2)
i2 )

be the corresponding edge in G2. Then Ri is defined as the rank of e′

i (rank of the weight of e′

i) among the n− i edges (weights
of the edges) of the form (v

(2)
i1 , v

(2)
j ), where v(1)j is not visited before the ith step. Note that, T1 is traversed in n − 1 steps,

but we get non-degenerate ranks R1, R2, . . . , Rn−2 in the first n − 2 steps only. Heller et al. (2012) argued that under the
null hypothesis of independence, R1, R2, . . . , Rn−2 are mutually independent, and Ri (i = 1, 2, . . . , n− 2) follows a discrete
uniform distribution with mass points 1, 2, . . . , n − i. So, their proposed test statistic THGH

= −2
n−2

i=1 log( Ri
n−i ) has the

exact distribution-free property in finite sample situations. The null hypothesis is rejected for smaller values of the Ris and
hence for higher values of THGH (see Heller et al., 2012 for details).

Now, consider a simple examplewith p = q = 2 and n = 5, where xi = yi for i = 1, 2, . . . , 5. Clearly, in this case, there is
an extreme dependence between x and y. Fig. 1 shows the scatter plot of the observations on x (and y) and the corresponding
complete graph G1 (and G2) along with all its edge weights. It also shows the MST T1 (and T2) and the weights of its edges in
black. Now consider the following random traversal of T1: (v

(1)
11 = x5, v

(1)
12 = x4), (v

(1)
21 = x5, v

(1)
22 = x3), (v

(1)
31 = x5, v

(1)
32 =

x2), (v
(1)
41 = x5, v

(1)
42 = x1). Therefore, R1, the rank of the weight of (y5, y4) among the weights of (y5, y1), (y5, y2), (y5, y3)

and (y5, y4), turns out to 4. Similarly, we have R2 = 3 and R3 = 2. So, in all these cases, Ri (i = 1, 2, 3) takes its highest
possible value. As a result, the test based on THGH fails to rejectH0, the null hypothesis of independence. This example shows
that even in the case of extreme dependence, random traversal can yield misleading results. This problem with random
traversal becomes more evident in high dimensions, where some of the nodes often have much higher degrees in the MST
(like the node x5 in the above example) compared to the rest. In the computer science literature, these nodes are called hubs.
Note that in one dimension, a node v0 can be the nearest neighbor of at most two other nodes, one located on the left and
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