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a b s t r a c t

Traditional principal component analysis often produces non-zero loadings, which makes
it hard to interpret the principal components. This drawback can be overcome by the sparse
principal component analysis procedures developed in the past decade. However, similar
work has not been done when the random variables or vectors are contaminated with
measurement errors. Simply applying the existing sparse principal component analysis
procedure to the error-contaminated data might lead to biased loadings. This paper
tries to modify an existing sparse principal component procedure to accommodate the
measurement error setup. Similar to error-free cases, we show that the sparse principal
component for the latent variables can be formulated as a bias-corrected lasso (elastic
net) regression problem based on the observed surrogates, efficient algorithms are also
developed to implement the procedure. Numerical simulation studies are conducted to
illustrate the finite sample performance of the proposed method.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

As an efficient dimensional reduction technique, principal component analysis (PCA) provides a sequence of orthogonal
linear combinations of the random variables, called principal components (PCs), from a multi-dimensional random vector,
which can sequentially capture the biggest variability among the data collected from the random vector. Through these
PCs, one can extract the commonality contained in the vector, and hopefully, an informative explanation might follow.
Many interesting applications of PCA can be found in the areas of engineering, biology, education and other social science,
for example, the handwritten zip code classification in Hastie et al. (2001), the human face recognition in Hancock et al.
(1996), and the gene expression data analysis in Alter et al. (2000), just name a few. However, the entries in the loading
vectors usually are nonzero which makes the interpretation of the PCs difficult. To overcome this drawback, Henry (1958)
proposed the famous rotation technique; Gorsuch (1983) recommended rotating with varimax to produce orthogonal PCs
or promax to produce oblique PCs. For more information on determining the proper rotations, see Tabachnick and Fidell
(2007); By restricting the loading values to be 0, 1, and −1 or other values, Vines (2000) proposed a simple principal
component analysis; By imposing a L1 constraint on the loading vectors directly, Jolliffe and Uddin (2003) proposed the
SCoTLASS method. As noted in Zou et al. (2006), the SCoTLASS technique suffers from the high computational cost, and
insufficient sparsity of loadings when a high percentage of explained variance is required. Being aware of that the PCA can
be reformulated as a ridge regression problem, Zou et al. (2006) proposed a modified Sparse PCA (SPCA) by integrating
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the elastic net approach with the lasso procedure, to produce sparse loadings. In addition to its attractive regression type
optimization idea, the popularity of the SPCA is enhanced by its very efficient algorithm. Lasso and elastic net are very
popular variable selection procedures in high dimensionalmodeling, wewill not introduce themhere for the sake of brevity.
More details on these methodology can be found in Tibshirani (1996), Efron et al. (2004), Zou and Hastie (2005), Zou and
Trevor (2005) and the references therein.

In the following discussion, we shall use the bold capital letter X to denote a n × p data matrix, its ith row is denoted by
xi, i = 1, 2, . . . , n, which will be viewed as a random sample from some population x. The jth column of X will be denoted
by Xj, j = 1, 2, . . . , p. Often times, the quantity of interest x cannot be observed directly in practice, which is often called
the latent variables or vector. Instead, a surrogate z can be observed, which is related to x in an additive way z = x + u,
where u is called the measurement error, x and u are independent. For some introduction on measurement error modeling,
see Fuller (1987) and Carroll et al. (2006). Clearly, the PCA based on x is not feasible in this scenario. If we simply apply
the existing SPCA procedure to the error-contaminated data, it might lead to biased loadings, just like the naive estimates
in errors-in-variables regression models. Therefore, an interesting question is how to identify the loadings for x based on
the sample from z and some additional information from u. In the measurement error setup, the covariance matrix Σu of
u is often assumed to be known. In the case of Σu being unknown, replicated observations on x are often used to obtain a
consistent estimate of Σu. More discussion on this case can be found in Section 3. In this paper, we will try to extend the
SPCA of Zou et al. (2006) to the measurement error setup under the assumption of known Σu. Throughout the paper, for
any generic random vector a, Σa denotes the population covariance of a.

Note that the additive structure and the independence imply Σz = Σx + Σu, so to find PCs for Σx, one can directly
work on Σz − Σu, provided the latter is known. However, this is rarely the case in practice. The PCA based on the sample
covariance matrix is not as natural as the error-free situation simply because we do not know the sample covariance
matrix of the latent vector x. If we denote Sab = n−1 n

i=1(ai − ā)T (bi − b̄), where ā, b̄ are the mean vectors from the
corresponding sequences, then simple algebra gives Szz = Sxx + Sxu + Sux + Suu. By subtracting Σu from both sides, we have
Szz − Σu = Sxx + Sxu + Sux + Suu − Σu. Since Sxu + Sux + Suu − Σu converges to 0 at the rate of 1/

√
n under quite general

assumptions, so we can expect that the PCs based on Sxx could be well approximated by the PCs based on Szz − Σu, but the
effect of removing Sxu + Sux + Suu − Σu from analysis on the resulting PCs should be investigated when the sample size is
small. To adapt Zou et al. (2006)’s SPCA to our current setup, we have to find a way to transform the problem to a penalized
linear regression problem.

The paper is organized as follows. Section 2 discusses the PCA based on population covariance matrices, a simple
argument and some numerical examples are presented to show that PCA based on the covariance matrix of the surrogates
often leads to biased PCs, but in a particular case, the PCs obtained from the matrices of the surrogates and the latent
variables are the same! The direct bias-corrected SPCA approximation is introduced in Section 3, followed by the efficient
algorithmdeveloped for the proposed procedure, aswell as some remarks on the adjusted total variances, the computational
complexity of the algorithm and how to apply the proposed method when Σu is unknown but replicated observations are
available. Numerical studies are conducted in Section 4, and all the theoretical derivations are postponed to Appendix.

2. PCA based on population covariance matrices

Before we work on the sample covariance matrices, it might be more illuminating to investigate the effect of
measurement errors on the PCA based on the population covariance matrices. Note that Σz = Σx + Σu, the PC directions
of x might not be the same as those of z because of the perturbation of the measurement error. However, if Σu is diagonal
and all the diagonal entries are equal, then the PC directions of x and z are indeed the same. To see this point, assume that
Σu = σ 2I , and the spectral decomposition of Σx is QMQT , where M = diag(m2

k). Then we must have

QTΣzQ = QTΣxQ + σ 2QTQ = diag(m2
j + σ 2).

While maintaining the direction of principal components, the above result also implies the magnitudes along the principal
components are inflated by an additive factor σ 2. For the general case, the eigenvalue–eigenvector relationship between
Σz and Σx becomes complicated, however, Σz − Σu = Σx suggests us to study the PCA of Σx, one can study the PCA of
Σz − Σu. For illustration purpose, we choose

Σx =


2 1
1 3


, Σ (1)

u =


1 0
0 1


, Σ (2)

u =


1 0
0 0.5


, Σ (3)

u =


1 0.5
0.5 0.5


.

Accordingly, letΣz beΣx+Σ
(j)
u with j = 1, 2, 3, that is, the latent vector x is contaminatedwith three differentmeasurement

errors. Fig. 1 shows the principal components of Σx and Σz with Σu defined above. It is easy to see that the principal
components of Σx and Σz are the same for Σ1

u , and different for the latter two cases.
Knowing the covariance matrix Σz is an ideal case. More realistically, the observations for z are available, therefore the

principal component analysis should be based on Szz − Σu, where Szz is the sample covariance matrix of zi, i = 1, 2, . . . , n.
Note that the bias-corrected statistic Szz − Σu is a consistent estimator of Σx, so when the sample size is small, the
performance of the principal component analysis based on Szz − Σu may not be very satisfying and the results should be
cautiously interpreted. In particular, in the finite sample cases or if the dimension p is larger than the sample size n, Szz −Σu
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