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a b s t r a c t

This paper surveys new estimators of the density of a random effect in linear mixed-
effects models. Data are contaminated by random noise, and we do not observe directly
the random effect of interest. The density of the noise is supposed to be known, without
assumption on its regularity. However it can also be estimated. We first propose an
adaptive nonparametric deconvolution estimation based on a selection method set up in
Goldenshluger and Lepski (2011). Then we propose an estimator based on a simpler model
selection deviced by contrast penalization. For both of them, non-asymptotic L2�risk
bounds are established implying estimation rates, much better than the expected
deconvolution ones. Finally the two data-driven strategies are evaluated on simulations
and compared with previous proposals.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

In order to analyze repeated measures in time for individuals with the same behavior, we focus on a linear mixed-effects
model. The observation value at time tj with jAf0;…; Jg for individual k, kAf1;…;Ng, denoted Yk;j, follows the model

Yk;j ¼ αkþβktjþϵk;j; ð1Þ

where the coefficients αk and βk are the random effects of regression and depend on the subject k. The times of observation tj
are known and equidistant with a time step Δ: tj ¼ jΔ. The random variables ðϵk;jÞ1rkrN; 0r jr J are the measurement errors of
zero mean. They are supposed independent and identically distributed (i.i.d.) with common density f ϵ. We suppose αk i.i.d.
with density f α and βk i.i.d. with density f β . Moreover we assume that ðϵk;jÞ1rkrN; 0r jr J and ðαk; βkÞ1rkrN are independent
sequences.

Mixed models with random effects are often used, for example, in pharmacokinetics. They describe both individual
behavior and variability between individuals. The distribution of random effects is of special interest. It allows for example
to describe the heterogeneity of the drug kinetics in the population of individuals. Mixed models have been widely studied,
often with parametric strategies and Gaussian random effects and noise (see Pinheiro and Bates, 2000). However it is not
clear that this normality assumption of the random effects is truly satisfied in practice. The aim of this paper is to produce
nonparametric estimation of the density of the random effects from the observations Yk;j.
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Several papers consider this problem. Wu and Zhu (2010) relax the Gaussian assumption proposing an orthogonality-
based estimation of moments estimating the third and fourth moments of the random effects and errors. Komárek and
Lesaffre (2008) suppose that the random effects are a mixture of Gaussian distributions, and estimate the weights of the
mixture components using a penalized approach. Papageorgiou and Hinde (2012) propose semi-parametric density models
of random effects. But it is the estimation of the complete random effects density which should be appropriate. This is the
framework of nonparametric estimation that is adopted in this paper.

Complete nonparametric estimation of f β and f α in model (1) has been little studied in the literature. The main reference
is Comte and Samson (2012) who set up a nonparametric estimation with deconvolution ideas. Indeed, model (1) can be
seen as a measurement error model. Deconvolution methods are various and have been initiated by the kernel study of Fan
(1991), followed by adaptive strategies (Pensky and Vidakovic, 1999; Comte et al., 2006; Delaigle and Gijbels, 2004) and
optimality of rates (Butucea and Tsybakov, 2007). Except the penalized contrast estimator of Comte and Samson (2012),
none of these previous estimators has been used in the mixed model framework. However, for all these methods, the noise
density is usually assumed to be known with a certain regularity. The resulting rates are thus very specific and depend on
the regularity of the noise and of the function under estimation. For example the noise is supposed to be ordinary smooth in
Comte and Samson (2012).

This paper focuses on improving existing nonparametric strategies for the estimation of f β . We focus on f β and we refer
to Comte et al. (2006) for f α, noticing that for t0 ¼ 0 model (1) writes Yk;0 ¼ αkþϵk;0 which is a standard convolution
equation. We first propose an estimator which uses all the available observations. A Mean Integrated Squared Error (MISE)
bound is computed and it shows that a bias-variance compromise must be performed. The particularity here is the selection
model procedure: we adapt a method set up in Goldenshluger and Lepski (2011) for kernel estimators. Then we establish a
non-asymptotic oracle risk bound using Talagrand's inequality. In a second time, another estimator is proposed, built using
the last and the first time of observations. If two times of observation are separated by a quite long time, enough information
is available to obtain a good estimation. As in the first case, risk bound leads us to propose a model selection strategy. In that
case a more classical and easy to implant strategy can be adopted, namely a penalized criterion (Massart, 2007; Birgé and
Massart, 1998).

What is new is that our two strategies take advantage of both nonparametric and deconvolution ideas. With very mild
assumption on the noise regularity (we only require that the characteristic function of the noise is nonzero), the two
estimators recover standard rates in density estimation for f β (Stone, 1980; Donoho et al., 1996) while deconvolution rates
were expected. Precisely logarithmic speed of convergence implied by deconvolution methods is avoided. Therefore our two
estimators have better rates. Furthermore we do not assume that the noise is ordinary smooth, which was assumed in
Comte and Samson (2012).

This paper is organized as follows. We proceed with the construction of the estimators in Sections 2.1 and 13. Bias-
variance decompositions of the L2�risk are proved (Propositions 1, 5) and lead us to propose adaptive strategies. The main
results (Theorems 3, 7) prove that the resulting estimators are adaptive. A short Section 3 provides a comparison of our
estimators with Comte and Samson (2012). Lastly, we illustrate the different methods by simulation experiments presented
in Section 4. We briefly discuss therein the case of unknown noise density (see Sections 4.3 and A.8) which is also
implemented for comparison. Proofs are gathered in Appendix A.

2. Construction of two estimators, risk bounds and adaptive results

Let us introduce some notations. For two functions f and g in L1ðRÞ \ L2ðRÞ, the scalar product is defined by
〈f ; g〉¼ R

R
f ðxÞgðxÞ dx and the associated norm is ‖f ‖2 ¼ R

R
jf ðxÞj2 dx. The Fourier transform of f is f nðxÞ ¼ R

R
eixuf ðuÞ du for all

xAR. When f is the density of a random variable X, f nðuÞ ¼ E½eiuX � is called the characteristic function of X. Then the
convolution product of f and g for all xAR, is f⋆gðxÞ ¼ R

R
f ðx�yÞgðyÞ dy. Finally we remind Plancherel–Parseval's formula:

8 f AL1ðRÞ \ L2ðRÞ, 2π‖f ‖2 ¼ ‖f n‖2.

2.1. Estimator using all the observations: bf
In this section we build an estimator of the density f β using all the available observations. We consider the normalized

variables Zk;m defined by the difference between two observations, for all kAf1;…;Ng, and for all mAf1;…; Jg

Zk;m≔
Yk;m�Yk;0

mΔ
¼ βkþ

ϵk;m�ϵk;0
mΔ

≕βkþWk;m: ð2Þ

For a given m, the variables Wk;m, kAf1;…;Ng, are i.i.d. with density f Wm
. Due to the independence between the ϵk's and the

βk's, the Zk;m are i.i.d. with density denoted by f Zm
, and definition (2) implies

f Zm
¼ f β⋆f Wm

: ð3Þ

The Fourier transform of (3) yields

f nZm
¼ f nβ f

n

Wm
:
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