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a b s t r a c t

We consider inference on the eigenvalues of the covariance matrix of a multivariate
normal distribution. The family of multivariate normal distributions with a fixed mean
is seen as a Riemannian manifold with Fisher information metric. Two submanifolds
naturally arises: one is the submanifold given by the fixed eigenvectors of the covariance
matrix; the other is the one given by the fixed eigenvalues. We analyze the geometrical
structures of these manifolds such as metric, embedding curvature under e-connection or
m-connection. Based on these results, we study (1) the bias of the sample eigenvalues, (2)
the asymptotic variance of estimators, (3) the asymptotic information loss caused by
neglecting the sample eigenvectors, (4) the derivation of a new estimator that is natural
from a geometrical point of view.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Consider a normal distribution with zero mean and an unknown covariance matrix, Nð0;ΣÞ. Let denote the eigenvalues
of Σ by

λ¼ ðλ1;…; λpÞ; λ14⋯4λp

and eigenvectors matrix by Γ, hence we have the spectral decomposition

Σ¼ ΓΛΓt ; Λ¼ diagðλÞ; ð1Þ

where diagðλÞ means the diagonal matrix with the ith diagonal element λi. It is needless to say that the inference on Σ is an
important task in many practical situations in such a diversity of fields as engineering, biology, chemistry, finance,
psychology, etc. Especially we often encounter the cases where the property of interest depends on Σ only through its
eigenvalues λ. We treat an inference problem on the eigenvalues λ from a geometrical point of view.

Treating the family of normal distributions Nðμ;ΣÞ (μ is not necessarily zero) as a Riemannian manifold has been done by
several authors. For example, see Fletcher and Joshi (2007), Lenglet et al. (2006), Skovgaard (1984), Smith (2005), and
Yoshizawa and Tanabe (1999). When μ equals zero, the family of normal distributions Nð0;ΣÞ can be taken as a manifold (say S)
with a single coordinate system Σ. Hence, S is identified with the space of symmetric positive definite matrices.
Geometrically analyzing the space of symmetric positive definite matrices has been an interesting topic in a mathematical
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or engineering point of view. Refer to Moakher and Zéraï (2011), Ohara et al. (1996) and Zhang et al. (2009) as well as the
above literature.

In this paper, we analyze S from the standpoint of information geometry while focusing on the inference on the
eigenvalues of Σ. The paper is aimed to make a contribution in two regards: (1) the geometrical structure of S is analyzed in
view of the eigenvalues and eigenvectors of Σ; (2) some statistical problems on the inference for λ are explained in the
geometrical terms.

We summarize the inference problem for λ. Based on independent n samples xi ¼ ðxi1;…; xipÞ0; i¼ 1;…;n from Nð0;ΣÞ, we
want to make inference on the unknown λ. We confine ourselves to the classical case where nZp. It is well-known that the
product–sum matrix

S ¼ ∑
n

i ¼ 1
xixti

is sufficient statistic for both unknown λ and Γ. The spectral decomposition of S is given by

S ¼HLHt ; L¼ diagðlÞ;

where

l¼ ðl1;…; lpÞ; l14⋯4 lp40 a:e:

are the eigenvalues of S, and H is the corresponding eigenvectors matrix. This decomposition gives us two statistics
available, i.e. the sample eigenvalues l and the sample eigenvectors H. However it is almost customary that we only use the
sample eigenvalues, discarding the information contained in H. In the past literature on the inference for the population
eigenvalues, every notable estimator is based simply on the sample eigenvalues. See Takemura (1984), Dey and Srinivasan
(1985), Haff (1991), Yang and Berger (1994) for orthogonally invariant estimators of Σ; Dey (1988), Hydorn and Muirhead
(1999), Jin (1993), Sheena and Takemura (2011) for direct estimators of λ. Since we do not have enough space to state the
concrete form of each estimator, we just mention Stein's estimator as a pioneering work for “shrinkage” estimator of Σ. In
general, an orthogonally invariant estimator of Σ is given by

Σ̂ ¼HΦHt ; Φ¼ diagðϕ1ðlÞ;…;ϕpðlÞÞ: ð2Þ

The estimator of λ is given by the eigenvalues of Σ̂, that is, ðϕ1ðlÞ;…;ϕpðlÞÞ. The sample covariance matrix (M.L.E. estimator)
S9n�1S gives the estimator of λ as ϕiðlÞ ¼ n�1li; i¼ 1;…; p, while Stein's “shrinkage” estimator gives birth to

ϕiðlÞ ¼ li=ðnþpþ1�2iÞ; i¼ 1;…; p: ð3Þ

Stein's estimator assigns the lighter (heavier) weight to the larger (smaller) sample eigenvalues, hence the diversity of l is shrunk.
This estimator is quite simple and performs much better than M.L.E. (see Dey and Srinivasan, 1985). Unlike Stein's estimator,
many estimators in the above literature are not explicitly given or too complicated for immediate use. Nonetheless they all have
one common feature. The derived estimators of λ only depend on l.

In a sense it is natural to implicitly associate the sample eigenvalues to the population eigenvalues, and the sample
eigenvectors to the population counterpart. However the sample eigenvalues are not sufficient for the unknown population
eigenvalues. Therefore it is important to evaluate how much information is lost by neglecting the sample eigenvectors.
Following Amari (1982), we gain an understanding of the asymptotic information loss with geometric terms such as Fisher
information metric and embedding curvatures.

Another statistically interesting topic is the bias of n�1l. It is well known that n�1l is largely biased and the estimators
mentioned above are all modification of n�1l to correct the bias, that is, “shrinkage estimators.” We show that the bias is
closely related to the embedding curvatures. Moreover the geometric structure of S naturally leads us to a new estimator,
which is also a shrinkage estimator.

The organization of this paper is as follows: In the former part (Sections 2 and 3), we describe the geometrical structure
of S in view of the spectral decomposition (1). In Section 2, we observe S as a Riemannian manifold endowed with Fisher
information metrics. In Section 3, we treat two submanifolds of S, a submanifold given by the fixed eigenvectors and the one
given by the fixed eigenvalues. The embedding curvatures of these submanifolds are explicitly given. We will show that the
bias of l is closely related to the curvatures. In the latter part (Sections 4 and 5), we consider the estimation problem of λ. In
Section 4, we describe the asymptotic variance of estimators when Γ is known (Section 4.1) and the asymptotic information
loss caused by discarding the sample eigenvectors H (Section 4.2). The asymptotic information loss could be measured by
the difference in the asymptotic variance between two certain estimators. In Section 5 for the case when Γ is unknown, we
propose a new estimator of λ, which is naturally derived from a geometric point of view. In the last section, some comments
are made for further research. All the proofs are collected in Appendix.

Unfortunately we do not have enough space to explain the geometrical concepts used in this paper. Refer to Boothby
(2002), Amari (1985), and Amari and Nagaoka (2000).
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