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a b s t r a c t

In the last decade, many authors studied asymptotic optimality of Bayesian wavelet
estimators such as the posterior median and the posterior mean. In this paper, we
consider contraction rates of the posterior distribution in Bayesian wavelet regression in
L2=l2 neighborhood of the true parameter, which lies in some Besov space. Using the
common spike-and-slab-type of prior with a point mass at zero mixed with a Gaussian
distribution, we show that near-optimal rates (that is optimal up to extra logarithmic
terms) can be obtained. However, to achieve this, we require that the ratio between the
log-variance of the Gaussian prior component and the resolution level is not constant over
different resolution levels. Furthermore, we show that by putting a hyperprior on this
ratio, the approach is adaptive in that knowledge of the value of the smoothness
parameter is no longer necessary. We also discuss possible extensions to other priors
such as the sieve prior.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we study Bayesian estimation of a function f with observations from the white noise model

dXðtÞ ¼ f ðtÞdtþdWðtÞ= ffiffiffi
n

p
: ð1Þ

We assume that f ABs
p;q is in the Besov space and W is the standard Brownian motion. Due to the acclaimed approximation

property of wavelets for functions in Besov spaces, wavelets expansion is typically used for estimation. This white noise
model (1) is closely related to the nonparametric regression model (Brown and Low, 1996; Donoho et al., 1995):

Yi ¼ f
i
n

� �
þzi ð2Þ

with standard normal noise. We choose to work with formulation (1) for its simplicity. Johnstone and Silverman (2005) and
Pensky (2006) have established explicit connections between models (1) and (2).

The Bayesian approach for estimating f consists of putting a prior on f and computing its posterior distribution, which is
usually performed via Markov chain Monte Carlo (MCMC) methods except in the special case where the prior is conjugate.
Motivated by the superior performance of the Bayesian approach in practice, several theoretical studies (Abramovich et al.,
2004; Johnstone and Silverman, 2005; Pensky, 2006) have investigated the asymptotic frequentist optimality properties of
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different Bayesian estimators, with posterior mean and posterior median being the most commonly studied ones. These
works give theoretical justifications for the use of Bayesian estimators in practice. Abramovich et al. (2007) and Abramovich
and Grinshtein (2010) considered convergence rates of an estimator called “Bayesian testimation” that does not seem fully
Bayesian. Castillo and van der Vaart (2012) considered estimation of a sparse sequence in the ls ball. Their objective is
discovery of sparsity patterns which we do not consider in this paper. For this reason, they consider the class of hierarchical
priors that more explicitly exploits sparsity properties and, hence, is very different from ours.

Our interest lies in studying the frequentist properties of the posterior distribution, for which a general theory has been
presented in Ghosal et al. (2000), Ghosal and Van Der Vaart (2007). In some sense the characterization of the posterior
distribution is more general than Bayesian estimators, since the latter only focuses on limited aspects of the posterior
distribution. Like frequentists, we assume that the data X has been generated according to model (1) with a given true
parameter f0. We investigate at what rate the posterior distribution contracts to f0 as n-1. That is, we investigate how
small a “neighborhood” A of f0 should be so that it still allows ΠnðAjXÞ-1 in probability. In this paper we will use Πn for the
posterior distribution and Πn for the prior distribution.

In this type of analysis, prior concentration rate characterized by the Kullback–Leibler distance is the most important
deciding factor of the convergence rates when considering choice of priors. This means that the prior distribution should
have support sufficiently large in the neighborhood of the true parameter to obtain the correct contraction rates.
Demonstration of this large support property composes the main part of our proofs.

Another important theoretical contribution is that by imposing a hyperprior on a parameter related to the smoothness
parameter of the Besov space, optimal rate of convergence can be obtained without knowing the value of the smoothness
parameter. Without such a hyperprior, even when the smoothness parameter is known, our strategy of proof does not
produce an optimal rate of convergence.

In conclusion, we propose that one should put a hyperprior on the ratio of the log-variance of the Gaussian prior
component and the resolution level.

2. Main results

2.1. Background

For simplicity we assume that f is periodic and use periodic orthonormal wavelet basis on ½0;1�. Using wavelet basis with
sufficient regularity, the function f can be expanded as

f ¼ ∑
2j0 �1

k ¼ 0
αj0kϕj0kþ ∑

jZ j0

∑
2j �1

k ¼ 0
βjkψ jk;

where ϕj0k are the scaling functions and ψ jk are the mother wavelets at resolution j, and j0 is the coarsest resolution in the
expansion. We assume j0 ¼ 0 for simplicity of notations below.

The Besov spaces include the well-known Sobolev and Hölder classes of function and also nearly contain the space of
functions of bounded variation. The norm for the Besov space with parameter s4maxð0;1=p�1=2Þ;1rpr1; and
1rqr1 is defined as

J f JBs
p;q
¼ JP0ðf ÞJ Lp þ ∑

jZ0
ð2js JQjðf ÞJ Lp Þq

 !1=q

;

where P0ðf Þ ¼ α00ϕ00 is the projection of f on the “approximation space”, and Qjðf Þ ¼∑2j �1
k ¼ 0βjkψ jk is the projection of f onto

the “detail space”.
In terms of the coefficients in the wavelet expansion, the Besov norm can be equivalently defined by

J f JBs
p;q
≍JβJBs

p;q
¼ jα00jþ ∑

1

j ¼ 0
2jðsþ1=2�1=pÞq Jβj: J

q
p

( )1=q

:

Note that for cases where q¼1 the usual change to the sup norm is required. We also define PJβ to be the sequence β′ such
that β′jk ¼ βjk when jr J and β′jk ¼ 0 when j4 J.

After wavelet transformation for (1), we get the Gaussian sequence model:

X00 ¼ α000þz00=
ffiffiffi
n

p

Xjk ¼ β0jkþzjk=
ffiffiffi
n

p
; jZ0; k¼ 0;1;…;2j�1;

where the superscript 0 indicates the true parameter.
Using a Bayesian approach for Gaussian sequence estimation, we put a prior on each βjk independently:

βjk � πjNð0; a2j Þþð1�πjÞδ0; ð3Þ

with parameters a2j ≍2
�2αj; πj≍2

� γj, for some αZ0, and γZ0. Here α is the ratio of the log-inverse-variance over the
resolution level, which is the key tuning parameter in the prior for optimal convergence rates. γ also has some effects but
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