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a b s t r a c t

The reasoning behind uses of confidence intervals and p-values in scientific practice may
be made coherent by modeling the inferring statistician or scientist as an idealized
intelligent agent. With other things equal, such an agent regards a hypothesis coinciding
with a confidence interval of a higher confidence level as more certain than a hypothesis
coinciding with a confidence interval of a lower confidence level. The agent uses different
methods of confidence intervals conditional on what information is available. The coherence
requirement means that all levels of certainty of hypotheses about the parameter agree with
the same distribution of certainty over parameter space. The result is a unique and coherent
fiducial distribution that encodes the post-data certainty levels of the agent.

While many coherent fiducial distributions coincide with confidence distributions or
Bayesian posterior distributions, there is a general class of coherent fiducial distributions that
equates the two-sided p-value with the probability that the null hypothesis is true. The use of
that class leads to point estimators and interval estimators that can be derived neither from
the dominant frequentist theory nor from Bayesian theories that rule out data-dependent
priors. These simple estimators shrink toward the parameter value of the null hypothesis
without relying on asymptotics or on prior distributions.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

In the years following the oracle that some form of fiducial inference may play a pivotal role in the 21st-century statistics
(Efron, 1998), there has been an ongoing resurgence of interest in fiducial distributions that generate confidence intervals
(e.g., Schweder and Hjort, 2002; Singh et al., 2005, 2007; Polansky, 2007; Tian et al., 2011; Bityukov et al., 2011; Kim and
Lindsay, 2011; Bickel, 2011, 2012b) and in other distributions of the fiducial type (e.g., Hannig et al., 2006; Hannig, 2009;
Xiong and Mu, 2009; Gibson et al., 2011; Wang et al., 2012; Zhao et al., 2012; Balch, 2012). Fiducial inference initially
promised an objective alternative to Bayesianism as a form of inductive reasoning (Fisher, 1973) but has historically suffered
from problems of understanding the meaning of fiducial probability and from the ability to derive conflicting fiducial
probabilities from the same family of sampling distributions (see Wilkinson, 1977). This paper addresses both difficulties by
interpreting fiducial probability in terms of the theories of coherent decision making that also undergird Bayesian inference.
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The main premiss is that many of the usual applications of confidence intervals in science lead to reasonable inferences that
can be improved by enforcing self-consistency in the technical sense of probabilistic coherence, which does not in itself
require Bayesian posterior distributions (Hacking, 1967; Goldstein, 1997; Bickel, 2012a).

Section 2 provides preliminary concepts and propositions, demonstrating that interpreting confidence levels as certainty
levels or hypothetical levels of belief leads either to non-coherent estimates and hypothesis testing or to inference on the
basis of a confidence distribution of the parameter as if it were a Bayesian posterior distribution. Iterating that reasoning
along the lines of Fisher's fiducial argument for multiple parameters leads to merging confidence distributions into a
parameter distribution that is coherent; thus, it is a probability measure.

This is fiducial inference in the sense that it is a modern development of fiducial reasoning but without the often
impractical requirements involving aspects of conditional inference and without violating the rules of ordinary probability
theory (that of the Kolmogorov axioms). The framework proposed in Section 2 also differs from Fisher's in its incorporation
of nested confidence sets of vector parameters. Thus, the proposed framework for inference is presented as a realization of
the core ideas behind the original fiducial argument, Neyman–Pearson confidence intervals, and theories of coherent
decision-making that prescribe minimizing expected loss with respect to a posterior distribution (e.g., von Neumann and
Morgenstern, 1953; Savage, 1954). (Following the usage in Dempster, 2008; Eaton and Sudderth, 2010; Bickel, 2012a, the
term “posterior” herein means data-dependent and thus includes but is not limited to a Bayesian posterior relative to some
prior.)

Section 3 demonstrates that the resulting framework of fiducial inference can lead to shrinkage in point and interval
estimates toward ϕ0, a null hypothesis value, in a way that is not possible in the standard frequentist and Bayesian
approaches. For example, Fig. 1 displays the shrunken parameter estimate as an alternative to the usual frequentist estimate
computed after testing the null hypothesis. Given the two-sided p-value PV, the MLE bϕ is simply shrunk to ð1�PVÞbϕ. That
value would only be available from Bayes's theorem if the prior depended on the sample size such that the posterior
probability of the null hypothesis were equal to PV.

The shrinkage estimates improve performance only to the extent that ϕ0 is close to the true value of the interest
parameter, as is illustrated by simulation in Section 4. Thus, ϕ0 is best specified using previous knowledge of the application
domain, as in Willink (2008) and work on frequentist shrinkage cited therein. Fortunately, the required knowledge is slight
enough to be readily available in nearly all applications in which p-values are reported since a ϕ0 must be specified to
conduct a statistical test of any simple null hypothesis that ϕ¼ ϕ0. Typically, ϕ0 ¼ 0 or another value that corresponds to the
absence of something: no effect, no association, no difference, etc. For example, Montazeri et al. (2010) applied methods
from Willink (2008) using the value of ϕ0 that encodes the absence of differential gene expression. By contrast, Bayesian
methods that allow nonzero posterior probability of a null hypothesis not only require the specification of ϕ0 but also a joint
prior distribution of all unknown parameters, including the assignment of a prior probability that ϕ¼ ϕ0. Thus, the previous
information needed to specify ϕ0 for the point and interval estimators in Section 3 is far less than that needed to apply
comparable Bayesian estimation.

Remarks elaborating on technical points appear in Section 5, a brief discussion in Section 6, and deferred proofs in
Appendix A.

2. Coherent fiducial distributions

The concept of a coherent fiducial distribution will be introduced in order to ground coherent decision making in a
procedure of confidence intervals or more general confidence sets. Specifically, the coherence condition will be
supplemented with a confidence-based condition in order to prescribe point estimates, interval estimates, hypothesis

Fig. 1. Estimates of the normal mean relative to its standard error as a function of the observed number of standard errors from 0, the null hypothesis
value. The black curve is the posterior mean with respect to the fiducial distribution, and the gray line is the maximum-likelihood estimate (MLE), plotted
as a solid line wherever the null hypothesis is rejected at the 5% significance level and as a dashed line elsewhere. See Example 9 for details.
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