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a b s t r a c t

The paper considers the construction of a confidence band for the trend function of a

stationary time series. An explicit formula is derived based on polynomial splines and

Sunklodas (1984). The performance of the confidence band is illustrated by simulation

studies. The proposed method is applied to the analysis of the annual yields of wheat in

the United States.

& 2012 Elsevier B.V. All rights reserved.

1. Introduction

Inference on trend functions is one of the classic topics in time series analysis. In this paper, we are interested in
constructing a confidence band for a smooth trend function of time series observations fyi,i¼ 1, . . . ,ng as follows:

yi ¼ gðuiÞþxi, ð1:1Þ

where gð�Þ represents the trend function defined in the interval ½0;1� with ui ¼ i=n and the zero-mean error term xi is an
autoregressive time series of order p (AR(p)) defined by

xt ¼
Xp

k ¼ 1

fkxt�kþEt ,

where fEtg is independent and identically distributed (IID) white noise with mean 0 and variance s2. To facilitate the
discussion, we introduce the vector format of model (1.1) as follows:

y¼ gþx,

where y¼ ðy1, . . . ,ynÞ
0, g¼ ðgðu1Þ, . . . ,gðunÞÞ

0. Throughout this paper, we will use bold lower-case letters to denote vectors,
bold upper-case letters to denote matrices, and lower-case letters to denote both time series and their realizations.

Analysis of the trend function in model (1.1) with an autoregressive error term has received intensive attention due to
its wide applications. The classic approach in stationary time series analysis is that the trend is assumed to be a parametric
function with known analytical form and unknown parameters. See for example Chapter 9 of Fuller (1996) for details.
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Although this parametric approach is appropriate for many applications in practice, its major drawback is that the
assumption about the trend function is usually artificial. It is desirable to extend the analysis to nonparametric settings
which do not need to specify the analytical form of the trend functions. In recent years as a result of advances of computing
technology, a great deal of work has been devoted to local kernels and polynomial splines, two of the most commonly used
nonparametric methods. It is impossible to cover the vast literature on these two methods here. Fan and Gijbels (1996)
provided an overview and some details about local kernels, especially for data from independent and identical
distributions. Opsomer et al. (2001), on the other hand, summarized the development of research about local kernels
for correlated data. For an overview and basic theoretical results of polynomial splines, interested readers can refer to, for
example, Stone (1994) and Huang (2003).

While most research concentrated on estimation, a few authors attacked construction of a confidence band for a
smooth unknown function. Bickel and Rosenblatt (1973) is a pioneer work on nonparametric confidence bands for a
density curve of independent and identically distributed observations. Since then several authors, such as Hall and
Titterington (1988), Xia (1998), Claeskens and Van Keilegom (2003), and Wang and Yang (2009), have investigated this
issue for independent observations. Wu and Zhao (2007) proposed a confidence band based on local kernels for the trend
with a stationary time series error term. In this paper, we will extend the method of Wang and Yang (2009) to stationary
time series trend analysis. The major contribution of this paper is to provide practitioners with the theoretical foundation
of a confidence bound and a fast as well as easy to implement algorithm. The band is simultaneous and conservative in the
sense that it covers the whole trend function at least with the probability of the given confidence level. It is worth
mentioning that compared to the local smoothing obtained by using a kernel, spline smoothing is global, i.e., only a single
optimization is needed for the unknown function over an entire range, instead of optimization at every point in the range.
As a result, polynomial splines used in this paper can be thousands of times faster than kernel smoothing, which was
discussed in detail in, for example, Xue and Yang (2006) and Wang and Yang (2007).

The paper will be organized as follows: in Section 2, we will introduce polynomial splines and confidence bands; in
Section 3, we will illustrate by simulation studies the performance of the proposed confidence bands for the trend function
in model (1.1) with several AR(1) terms, and analyze the annual yields of wheat in the United States; finally in Section 4,
we will provide the details of the proofs of the theoretical results based on which confidence bands are constructed. To
facilitate reading, the existing theorems that play important roles in deriving the theoretical results of this paper are
provided in the Appendix.

2. Construction of confidence band

2.1. Polynomial splines

Suppose that m is a positive integer. Consider a sequence of equally spaced points or knots

ð�mþ1Þhr � � �r0rhr2h � � �rNhr1. Notice that there are Nþm knots that divide the interval ½ð�mþ1Þh,1� into

subintervals Jj ¼ ½jh,ðjþ1ÞhÞ,j¼�mþ1,�mþ2, . . . ,N�1 and JN ¼ ½Nh,1�, of width h. For any given u 2 ½0;1�, j(u) is the

knot corresponding to the interval that includes u. Let Gðm�2Þ
N ¼ Gðm�2Þ

N ½0;1� denote the space of functions that are

polynomial of degree m�1 on each Jj and have continuous ðm�2Þth derivatives. The B-spline basis of Gðm�2Þ
N is bmðuÞ ¼

ðbj,mðuÞ,j¼�mþ1, . . . ,NÞ0. For any function jð�Þ in L2
½0;1� define the norm as

JjJ2
2 ¼

Z 1

0
j2ðxÞ dx:

The B-spline standardized basis cmðuÞ ¼ ðcj,mðuÞ,j¼�mþ1, . . . ,NÞ0 is defined as

cj,mðuÞ ¼
bj,mðuÞ

Jbj,mJ2
¼

bj,mðuÞ

f
R 1

0 b2
j,mðuÞ dug1=2

: ð2:1Þ

For a realization of time series y, define a vector cj,m ¼ ðcj,mðu1Þ, . . . ,cj,mðunÞÞ
0 with

cj,mðuiÞ ¼
bj,mðuiÞ

Jbj,mJ2
,

and an n� ðNþmÞ matrix

Cm ¼ ðc�mþ1, . . . ,cNÞ:

We will focus on the cases of m¼1,2: Gð�1Þ
N is the space of functions that are constant on each Jj, and Gð0ÞN is the space of

functions that are linear on each Jj and continuous on [0,1].
The B-spline basis for Gð�1Þ

N is b1ðuÞ ¼ ðbj,1ðuÞ,j¼ 0, . . . ,NÞ0, where bj,1ðuÞ is the indicator function of Jj, i.e.

bj,1ðuÞ ¼
1, j¼ jðuÞ,

0 otherwise:

�
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