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a b s t r a c t

This work extends the study of convergence properties of the Shannon differential

entropy, and its connections with the convergence of probability measures in the sense

of total variation and direct and reverse information divergence. The results relate the

topics of distribution (density) estimation, and Shannon information measures estima-

tion, with special focus on the case of differential entropy. On the application side, this

work presents an explicit analysis of the density estimation, and differential entropy

estimation, for distributions defined on a finite-dimension Euclidean space ðRd ,BðRd
ÞÞ.

New consistency results are derived for several histogram-based estimators: the

classical product scheme, the Barron’s estimator, one of the approaches proposed by

Györfi and Van der Meulen, and the data-driven partition scheme of Lugosi and Nobel.

& 2012 Elsevier B.V. All rights reserved.

1. Introduction

The estimation of Shannon information measures, such as the differential entropy and the mutual information
(Shannon, 1948; Cover and Thomas, 1991; Gray, 1990; Csiszár and Shields, 2004), is fundamentally related to the problem
of distribution (density) estimation (Devroye and Györfi, 1985; Devroye and Lugosi, 2001), as these information measures
are functionals of a probability distribution. These two important learning scenarios are well understood and have been
systematically studied by the statistical learning community.

Density estimation, when posed as a histogram-based problem, has been characterized extensively in the literature,
where strong consistency in the L1 sense is well understood (Devroye and Györfi, 1985). Necessary and sufficient
conditions are known in particular for product non-adaptive histogram-based estimates (Abou-Jaoude, 1976) (see also,
Devroye and Györfi, 1985). In recent years, some extensions have been derived using data-dependent partitions (Lugosi
and Nobel, 1996), and the family of histogram-based estimators proposed by Barron et al. (1992). In the particular case of
the Barron-type histogram-based estimator, research has addressed consistency under topologically stronger notions, such
as consistency in direct information divergence (I-divergence) (Barron et al., 1992; Györfi and Van der Meulen, 1994),
in w2-divergence and expected w2-divergence (Györfi et al., 1998; Vajda and Van der Meulen, 2001) and in the general
family of Csiszár’s f-divergence (Berlinet et al., 1998).

For the estimation of information measures, there is a large body of literature dealing with mutual information (MI) and
Shannon differential entropy estimation for distributions defined on a finite dimensional Euclidean space ðRd,BðRd

ÞÞ, (see Beirlant
et al., 1997 and references therein for an excellent review). In particular, consistency is well known for histogram-based and

Contents lists available at SciVerse ScienceDirect

journal homepage: www.elsevier.com/locate/jspi

Journal of Statistical Planning and Inference

0378-3758/$ - see front matter & 2012 Elsevier B.V. All rights reserved.

doi:10.1016/j.jspi.2012.02.023

n Corresponding author.

E-mail addresses: josilva@ing.uchile.cl, jorgesil.edu@gmail.com (J.F. Silva), pparada@ing.uchile.cl (P. Parada).

URL: http://www.ids.uchile.cl/~josilva/ (J.F. Silva).

Journal of Statistical Planning and Inference 142 (2012) 1716–1732

www.elsevier.com/locate/jspi
www.elsevier.com/locate/jspi
dx.doi.org/10.1016/j.jspi.2012.02.023
mailto:josilva@ing.uchile.cl
mailto:jorgesil.edu@gmail.com
mailto:pparada@ing.uchile.cl
mailto:http://www.ids.uchile.cl/~josilva/a4.3d
dx.doi.org/10.1016/j.jspi.2012.02.023


kernel plug-in estimates (Beirlant et al., 1997; Györfi and Van der Meulen, 1987). In the case of histogram-based estimators, the
standard approach considers non-adaptive product partition (Beirlant et al., 1997), and some extensions have been proposed for
data-driven partitions (Darbellay and Vajda, 1999; Silva and Narayanan, 2010b).

A natural question to ask is if there is a connection between the many flavors of consistency for density estimation
(in total variation—or L1 in the case of absolutely continuous distribution with respect to the Lebesgue measure, in (direct-
reverse) I-divergence, in Csiszár’s f-divergence) and the problem of estimating Shannon information measures. We are
interested in knowing what flavor of consistent for the density estimation, if any, is sufficient, or needed, to achieve a
strongly consistent estimate of the differential entropy. A version of this question was originally stated by Györfi and Van
der Meulen (1987). Based on their results (on two histogram-based constructions), they conjectured that extra conditions
are always needed to make L1-consistent histogram-based density estimates consistent for the differential entropy. Silva
and Narayanan (2010a, 2010b) have found congruent results when working with data-dependent partitions in the context
of MI and Kullback–Leibler divergence (KLD) estimation. In particular, they found stronger conditions for estimating MI
and KLD than the one obtained for a consistent estimation of the underlying density in the L1 sense (Lugosi and Nobel,
1996). These findings, although interesting, are partial in the sense that they are valid only for specific constructions
(estimators) and, consequently, general conclusions cannot be derived from them. To the best of our knowledge the
stipulation of concrete results connecting the topics of information-measure estimation and density estimation remains an
open problem. Such a result (or results) would provide cross-fertilization between these two important lines of research,
which to our knowledge have been mostly developed as independent tracts.

Moving in this direction, this work addresses lines of studying the Shannon differential entropy as a functional of the
space of probability distribution, in particular, in terms of its convergence properties with respect to deterministic
sequences of measures. This is the basic ingredient for understanding consistency, since in the learning scenario we also
have sequences of measures, although they are random objects driven by an empirical process (Devroye and Györfi, 1985).
Along these lines, Piera and Parada (2009) recently studied this problem and derived a number of conditions on a sequence
of probability measures fPn,n 2 Ng and the limiting distribution P to guarantee that limn-1 HðPnÞ ¼HðPÞ.

In the first part of this work, we revisit, refine, and extend these convergence results. From them, we derive concrete
relationships between convergence in (reverse and direct) I-divergence and the convergence of Shannon differential
entropy. These relationships are obtained under different settings, varying from stronger to weaker conditions on the
limiting distribution, and from weaker to stronger conditions in the way the sequence converges to P, respectively.
Interestingly, in many of these settings, the convergence on I-divergence suffices to guarantee the convergence of the
differential entropy. The results ratify the conjecture raised by Györfi and Van der Meulen (1987), in the sense that
convergence on total variation is not sufficient to obtain a convergence of the Shannon differential entropy for the
continuous alphabet case. These findings also agree with recent results that demonstrate the discontinuity of the Shannon
measures in the countable alphabet scenario (Ho and Yeung, 2009, 2010).

In the second part of this article, we report applying those convergence results to the problem of histogram-based
estimation. Specifically we studied four particular estimators: the classical product-type partition estimator (Abou-Jaoude,
1976), the data-driven partition estimator (Lugosi and Nobel, 1996), the Barron histogram-based estimator (Barron et al.,
1992), and the histogram-based estimator by Györfi and Van der Meulen (1987). We derived new density-free strong
consistency results for each estimator, either in the case of density (in the sense of I-divergence), or in the Shannon
differential entropy estimation problem.

The rest of the paper is organized as follows. Section 2 introduces notations and the background needed for the rest of
the exposition. Section 3 addresses the convergence of Shannon differential entropy. Section 4 presents the applications of
the results in the two previously mentioned statistical learning scenarios. Finally, some of the proofs are presented in the
Appendix section.

2. Preliminaries

We start with some basic notations and definitions needed for the rest of the exposition. Let ðRd,BðRd
ÞÞ denote the

standard k-dimensional Euclidean measurable space equipped with the Borel sigma field (Halmos, 1950; Breiman, 1968).
Let X 2 BðRd

Þ be a separable and complete subset of Rd (i.e., X is a Polish subspace of Rd). For this space, let PðXÞ be the
collection of probability measures in ðX,BðXÞÞ and let ACðXÞ � PðXÞ denote the set of probability measures absolutely
continuous with respect to l, the Lebesgue measure1 (Halmos, 1950). For any m 2 ACðXÞ, ðdm=dlÞðxÞ denotes the Radon–

Nikodym (RN) derivative of m with respect to l. In addition, let ACþ ðXÞ denote the collection of probability measures
m 2 ACðXÞ where ðdm=dlÞðxÞ is strictly positive, Lebesgue almost everywhere in X, i.e., the supportðdm=dlÞ differs from X in
a set of Lebesgue measure zero.2 Note that when m 2 ACþ ðXÞ, then m and l are mutually absolutely continuous in X,
and consequently, ðdl=dmÞðxÞ is well-defined and, furthermore, is equal to ððdm=dlÞðxÞÞ�1 for Lebesgue almost every
(Lebesgue-a.e.) point x 2 X.

1 A measure s is absolutely continuous with respect to a measure m, denoted by s5m, if for any event A such that mðAÞ ¼ 0, then sðAÞ ¼ 0.

Consequently ds=dm is well-defined, which is the Radon–Nikodym derivative or density, and furthermore, 8A 2 BðXÞ, sðAÞ ¼
R

Aðds=dmÞ dm.
2 Let f : X-R be a real function: then its support is the closure of the set fx : f ðxÞ40g.
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