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a b s t r a c t

We study variable selection for partially linear models when the dimension of covariates

diverges with the sample size. We combine the ideas of profiling and adaptive Elastic-Net.

The resulting procedure has oracle properties and can handle collinearity well.

A by-product is the uniform bound for the absolute difference between the profiled and

original predictors. We further examine finite sample performance of the proposed

procedure by simulation studies and analysis of a labor-market dataset for an illustration.

& 2012 Elsevier B.V. All rights reserved.

1. Introduction

Consider the partial linear models (PLM Härdle et al., 2000)

Y ¼ XTbþgðZÞþe, ð1:1Þ

where X ¼ ðx1, . . . ,xpÞ
T and Z are the linear and nonparametric components, gð�Þ is an unknown smooth function. We are

interested in variable selection procedure for parametric components X when the dimension number p is large, which may
depend upon the sample size. We propose to use the adaptive Elastic-Net (Zou and Zhang, 2009) for variable selection in
the PLM using profile least squares approach to convert the partial linear models to the classical linear regression model.

In the past decade, we have witnessed great progress in variable selection for a variety of models, since two elegant
penalized based methods, the least absolute shrinkage and selection operator (LASSO) penalty (Tibshirani, 1996) and the
smoothly clipped absolute deviation (SCAD) penalty (Fan and Li, 2001, 2002), had been proposed. A large body of penalized
methods has been studied in the literature. See for example Zou and Hastie (2005), Meinshausen and Bühlmann (2006),
Zou (2006, 2008), Zhao and Yu (2006), Huang et al. (2008, 2009), and van de Geer (2008). Recently, researchers have also
considered applications of penalization methods in semiparametric and nonparametric models. For instance, Li and Liang
(2008) for semiparametric models and Liang and Li (2009) for partially linear models with measurement errors. Huang
et al. (2010) and Ravikumar et al. (2009) investigated high-dimensional nonparametric sparse additive models. Xie and
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Huang (2009) and Ni et al. (2009) studied variable selection for partially linear models with a divergent number of linear
covariates. It is noteworthy that Xie and Huang (2009) required p2=n-0 as n-1.

The PLM, as a trade-off between linear models and additive models, that replace one linear component by a
nonparametric function, have been studied well in literature and widely been used to explore the complicated relation
between a response to treatment and predictors of interest (Härdle et al., 2000). See for example Opsomer and Ruppert
(1999), Zeger and Diggle (1994), Severini and Staniswalis (1994), Robinson (1988), Speckman (1988), and Engle et al.
(1986). An attractive feature of PLM in that a presmoothing procedure can transfer them to a standard linear model.
Correspondingly, the linear parameters can be estimated at the root�n rate under certain conditions. Note that redundant
variables may enter the PLM when many covariates are collected, and should be excluded for a final model. The motivation
for this paper is whether we can adopt variable selection procedure which was originally developed for linear models for
the PLM. If so, variable selection for PLM becomes easier to handle. We confirm this conjecture for the adaptive Elastic-Net
procedure. However, it is not trivial to give a theoretical justification since the ‘‘synthetic’’ data based on the presmoothed
model are not independent.

The rest of the article is organized as follows. Section 2 introduces the presmoothing procedure, adaptive Elastic-Net
procedure and its variant for the PLM. Section 3 presents the asymptotic properties for the proposed procedure. The
resulting estimator is shown to have an oracle property. Monte Carlo simulations show the proposed procedure works well
with moderate sample sizes. An empirical example is examined to illustrate the application of the method. All technical
proofs are left to the Appendix.

2. Profiled adaptive Elastic-Net

2.1. Profiled responses and predictors

In partially linear models, the profile least squares approach has been used to convert the semiparametric model to the
linear setting (Fan and Huang, 2005; Speckman, 1988). Note that EðY9ZÞ ¼ fEðX9ZÞgTbþgðZÞ. It follows from this approach that

Y�EðY9ZÞ ¼ fX�EðX9ZÞgTbþe, ð2:1Þ

which is a standard linear model if EðY9ZÞ and EðX9ZÞ are known, and we may adopt the procedures developed in Zou and
Zhang (2009) to study variable selection for the partially linear models. Our strategy is that we first nonparametrically estimate
two conditional expectations EðY9ZÞ and EðX9ZÞ and then substitute the two estimates in (2.1). Through this presmoothing
technique, we can then develop a variable selection procedure for the partially linear models.

Let ðX1,Z1,Y1Þ, . . . ,ðXn,Zn,YnÞ be an iid sample of size n from model (1.1). Let X¼ ðXT
1, . . . ,XT

nÞ
T , Y¼ ðY1, . . . ,YnÞ

T and
similarly for Z. In matrix notation, (1.1) can be expressed as

Y¼Xbþgþe : ð2:2Þ

In this paper, we use locally linear procedure to estimate EðY9ZÞ and EðX9ZÞ (Fan and Gijbels, 1996), denote these estimates
as bEðY9ZÞ and bEðX9ZÞ. In what follows, we define mxðzÞ ¼ EðX9Z ¼ zÞ, myðzÞ ¼ EðY9Z ¼ zÞ, ~X i ¼ Xi�EðXi9ZiÞ, ~Y i ¼ Yi�EðYi9ZiÞ,bX i ¼ Xi�

bEðXi9ZiÞ, and bY i ¼ Yi�
bEðYi9ZiÞ.

Let A¼ fj : bja0,j¼ 1;2, . . . ,pg, called the size of A the intrinsic dimension of the underlying model. We wish to uncover
the set A and estimate the corresponding coefficients.

2.2. The choice of penalty function

After profiling, we can apply the popular penalized least squares technique to the ‘‘synthetic’’ data. As discussed in the
Introduction section, there are many nice penalty functions proposed in the literature. In this work we choose to use the
adaptive Elastic-Net penalty. As nicely demonstrated in Zou and Zhang (2009), the adaptive Elastic-Net combines the strengths
of adaptive ‘1 penalization (Zou, 2006) and the power of quadratic regularization to handle the collinearity problem which often
appears in real data analysis.

The adaptive Elastic-Net procedure has two steps. First, we construct the Elastic-Net estimator defined as follows:

bbEL ¼ 1þ
l2

n

� �
arg min

b

fJby�bXbJ2
2þl2JbJ

2
2þl1JbJ1g: ð2:3Þ

The Elastic-Net does not possess the oracle properties of SCAD. In the second step, we use the Elastic-Net estimator to
construct the adaptive weights by

ŵj ¼ ð9b̂j,EL9Þ
�g, j¼ 1;2, . . . ,p, ð2:4Þ
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