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a b s t r a c t

An explicit form of confidence intervals for the treatment effect in random effects meta-

analysis model obtained from Harville–Jeske–Kenward–Roger approach is given. These

restricted likelihood based intervals are compared to alternative procedures commonly

used in collaborative studies when the number of participants is small and study-

specific variances are heterogeneous. Monte Carlo simulation experiments show that

the former intervals have quite conservative coverage probabilities and favor the latter

intervals.

Published by Elsevier B.V.

1. Confidence estimation in meta-analysis problems

The subject of interest here is confidence intervals for the common mean when several different studies, methods,
instruments or laboratories measure a given property of the same material or the difference between two treatments. The
combination of such measurements to allow statistical analysis of several individual studies is a goal of meta-analysis.
Although some debate concerning advantages of random effects models in meta-analysis continues (see Borenstein et al.,
2009), the following heterogeneous model has become a common tool of choice.

Denote by ni the number of observations made in the laboratory i, i¼ 1, . . . ,p. In interlaboratory studies applications
which are of interest here, p is not large. As a matter of fact, the comparison of merely two methods (p¼2) is a frequent
problem in metrology. Rukhin (2009) discusses some practical examples arising in interlaboratory studies where this
problem appears.

Partly for lack of better information, the observations are supposed to follow a Gaussian distribution as in the model
below. Namely, the observed data xik, k¼ 1, . . . ,ni, is assumed to have the form

xik ¼ mþ‘iþEik, i¼ 1, . . . ,p, ð1Þ

where m is the treatment effect, common mean or the property value, ‘i represents the study (or method) effect, which is
normal with mean 0 and unknown variance s2. The independent normal, zero mean random errors Eik, have unknown
(different) variances t2

i . For a fixed i, xi ¼
P

kxik=ni is normally distributed with the mean m and the variance s2þs2
i , where

s2
i ¼ t

2
i =ni. If s2þs2

i were known up to a factor, then the least squares estimator of m could be used, ~m ¼
P

ioixi, with
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normalized weights

oi ¼
1

s2þs2
i

X
j

1

s2þs2
j

24 35�1

: ð2Þ

Then

Varð ~mÞ ¼F¼
X

i

1

s2þs2
i

" #�1

: ð3Þ

Following common practice, the same form of weighted statistic is used in which the weights themselves are estimated. In
some problems of meta-analysis the sample sizes ni are not available, but when they are, the classical unbiased statistic
s2

i ¼
P

jðxij�xiÞ
2=½niðni�1Þ� has the distribution s2

i w
2ðniÞ=ni, ni ¼ ni�1, and is independent of xi and s2

j , jai. This is the
situation studied in this paper. Although s2 can be treated as a possibly negative variance component such that
s2þs2

i 40, our s2 has the meaning of variance so that it must be non-negative.
To estimate s’s the restricted maximum likelihood estimator (REML) is commonly employed. It is well known that the

plug-in version of (3), which replaces the unknown s2,s2
1, . . . ,s2

p by REML statistics ~s2, ~s2
1, . . . , ~s2

p such that
Eð ~s2
þ ~s2

i Þrs2þs2
i , underestimates the variance of the corresponding common mean estimator (Li et al., 1994). Our goal

is to derive REML based confidence intervals for the treatment effect in model (1) which includes corrections to the
traditional method by using Harville–Jeske–Kenward–Roger approach.

The organization of this paper is as follows. In Section 2 the method of Harville and Jeske (1992) and Kenward and
Roger (1997) to obtain confidence intervals is reviewed. Explicit formulas for all REML related characteristics are found
there. The confidence intervals are derived in Section 3 and are compared via a Monte Carlo study in Section 4. All
mathematical derivations are collected in Appendix.

2. Restricted maximum likelihood method: variance approximations and information matrix

In a general context of mixed effects linear models, Harville and Jeske (1992, Section 4.2) suggested an estimator of the
variance of a sample counterpart of the least squares statistic, which in our case is the weighted average

~x ¼
X

i

xi ~oi ¼
~F
X

i

xi

~s2
þ ~s2

i

with ~o i ¼ ð ~s2
þ ~s2

i Þ
�1=
P

jð ~s
2
þ ~s2

j Þ
�1
¼ ð ~s2

þ ~s2
i Þ
�1 ~F. They proposed the use of the REML variances estimators and gave two

following approximations based on Taylor’s formula or the propagation-of-error method. The first one deals with the mean
squared difference between ~x and ~m

Eð ~x� ~mÞ2 � trðVLÞ: ð4Þ

Here V is the mean squared error matrix of the random vector ð ~s2, ~s2
1, . . . , ~s2

pÞ, and L is the covariance matrix of the
gradient ð ~m 00, ~m 01, . . . , ~m 0pÞ

T , @s2
0 ¼ @s2. The exact form of the elements of these two matrices is given later in this section. This

approximation was originally introduced by Kackar and Harville (1984).
The second approximation corrects for the bias of the plug-in estimator ~F of F

E ~F �Fþ1
2 trðVHÞ ¼F�trðVLÞ: ð5Þ

Here H is the Hessian of F, which is a negative semidefinite matrix, evaluated at s2,s2
1, . . . ,s2

p . In the model (1), L¼�H=2.
The formula (5) requires (approximate) unbiasedness of ð ~s2, ~s2

1, . . . , ~s2
pÞ, so that the linear term in

ð ~s2
�s2, ~s2

1�s2
1, . . . , ~s2

p�s2
pÞ can be neglected. Since ~x is an unbiased estimator of m, such that ~x� ~m is uncorrelated with

~m, one has Varð ~xÞ ¼ Eð ~x� ~mÞ2þF. This identity suggests the formuladVarð ~xÞ ¼ ~Fþ2 trð ~V ~LÞ, ð6Þ

where ~V is the estimated mean squared error matrix of ð ~s2, ~s2
1, . . . , ~s2

pÞ, and ~L has a similar meaning.
The variance estimator (6) was also recommended by Kenward and Roger (1997) who gave a formalization of

these approximations in more general mixed effects linear models when the inverse of the restricted likelihood
information matrix J is used in lieu of V. Via a Monte Carlo study they demonstrated good performance of the
resulting variance estimators and test statistics in several settings more general than (1). These approximations are
implemented in the SAS=STAT@ procedure ‘‘MIXED’’ (SAS 9.1.3 Help and Documentation, Cary, NC: SAS Institute Inc.,
2000–2004).

Because the matrices V and La0 are positive semidefinite, trðVLÞ40, and Eq. (4) confirms negative bias of the
estimator ~F. However in our model all non-negative estimators of s2 are biased although ð ~s2

1, . . . , ~s2
pÞ can be assumed to be

an (approximately) unbiased estimator of ðs2
1, . . . ,s2

pÞ. To adjust for the former fact, the formula

E ~F �FþUF2
X

i

1

ðs2þs2
i Þ

2
�trðVLÞ, U¼ Eð ~s2

�s2Þ

A.L. Rukhin / Journal of Statistical Planning and Inference 142 (2012) 1999–20082000



Download English Version:

https://daneshyari.com/en/article/1147530

Download Persian Version:

https://daneshyari.com/article/1147530

Daneshyari.com

https://daneshyari.com/en/article/1147530
https://daneshyari.com/article/1147530
https://daneshyari.com

