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a b s t r a c t

We develop empirical best estimators for small area event rates based on the

hierarchical Poisson model with log-normal mixing distribution, when the basic data

consists of area level measurements. We derive an approximate expression to the mean

squared error of the estimators and we provide a method for estimating this expression.

& 2012 Elsevier B.V. All rights reserved.

1. Introduction

It has long been recognized that direct small area estimates, usually calculated based on a small number of
observations, result in unreliable estimation of the corresponding parameters of interest. By now the literature on model
based small area estimation methods, that thrive by ‘borrowing strength’ from neighboring areas, is quite vast. Ghosh and
Rao (1994) provide a review of such methods based on hierarchical models, showing the usefulness of empirical Bayes and
empirical best linear unbiased prediction (EBLUP) for small area estimation. Applications, for continuous responses,
include estimation of per capita income (Fay and Herriot, 1979) and estimation of mean acreage under a crop (Battese
et al., 1988).

Small area estimation techniques for the analysis of discrete data and in particular for the estimation of event rates
have also been proposed by several authors. These, among many, include the quasi-empirical Bayes estimators of
Raghunathan (1993) who applied his methodology for estimating hospital admission rates, and the empirical Bayes
estimators of Clayton and Kaldor (1987) who applied their methodology for estimating relative rates of lip cancer.

Here we develop empirical best estimators for small area event rates based on the hierarchical Poisson model with log-
normal mixing distribution. Specifically, we assume that the observed small area counts, yi, are independent realizations
from Poisson distributions with conditional means EðYi9liÞ ¼ li. The proposed estimators, that are developed in the spirit of
Ghosh and Maiti (2004), are shrinkage estimators in the sense that the direct estimates of li, given by yi, are shrunk
towards a regression surface, xT

i b, the mean of the mixing distribution, E logðliÞ ¼ xT
i b. Whereas Ghosh and Maiti (2004)

consider the one parameter natural exponential family with quadratic variance functions, they considered only conjugate
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priors. For instance, for the Poisson case, they considered only the gamma priors. In contrast, we consider the non-
conjugate log-normal priors for Poisson parameters. In fact, our approach is more well-suited for the log-linear regression
models which have become the cornerstone of research for the analysis of count data.

In Section 2 we present the model and the development of the estimators of the small area rates. These are obtained as
best linear unbiased predictors (BLUPs) assuming that the model parameters are known, and then replacing them by
appropriate estimators, obtained using the extended quasi-likelihood approach of Godambe and Thompson (1989). In
Section 3 we derive a second order approximation to the mean squared error (MSE) of these estimators and we provide a
method for estimating this expression. The paper concludes with a brief discussion. Some of the long algebraic derivations
are provided in the Appendix.

Simulation study results that show that the proposed approximation to the MSE provides a reliable measure of the
uncertainty associated with the estimators and results from an application to a real data set are available from the authors.

2. The model and development of estimators

Let yi denote the observed number of events in the ith small area, i¼ 1, . . . ,N. Our model assumes that conditionally on
the unobserved small area rates, denoted by li, the responses Yi are independently distributed according to the Poisson
distribution with mean li. The responses yi can serve as unbiased estimators of the respective rates, li, but this estimation
procedure is often unreliable indicating the need of developing estimators that borrow strength from related areas. We
achieve this by making a distributional assumption on the li. Specifically, we assume that the natural logarithm of the li

independently follow a normal distribution with mean xT
i b and variance s2, where xi is the p-dimensional design vector of

the ith area and b is the vector of the regression coefficients. Thus, the assumed model, in symbols, is written as

Yi9li �
ind

PoissonðliÞ and logðliÞ �
ind

NðxT
i b,s2Þ, i¼ 1, . . . ,N: ð1Þ

Henceforth, the parameters will be collectively denoted by Z¼ ðbT ,s2Þ
T .

We estimate the small area means by the respective best linear unbiased predictors (BLUPs) of li given on Yi, which we
will denote by ~liðZÞ � ~li, i¼ 1, . . . ,N. These are given by

~li ¼ EðliÞþ
covðYi,liÞ

varðYiÞ
fYi�EðYiÞg, ð2Þ

where, based on model (1) it can be shown that, mi � EðYiÞ ¼ exp½xT
i bþs

2=2�, m2i � varðYiÞ ¼ mið1þmifÞ, and
covðYi,liÞ ¼ m2

i f, where fðs2Þ �f¼ exp½s2��1. Substituting these in (2) we obtain that

~li ¼ miþ
mif

mifþ1
ðYi�miÞ, ð3Þ

which equivalently can be written as a weighted average of mi and Yi: ~li ¼wiYiþð1�wiÞmi, where wi ¼ mif=ðmifþ1Þ.
However, the above cannot be used as such because both b and s2 are unknown and we thus need to estimate them

from the marginal distributions of Yi, i¼ 1, . . . ,N. We achieve that by using the extended quasi-likelihood estimation
theory of Godambe and Thompson (1989). This theory, as applied here, requires knowledge of the first four marginal
moments of Yi, which we can obtain based on model (1).

We begin by defining the elementary unbiased estimating functions, gi ¼ ðg1i,g2iÞ
T , where g1i ¼ Yi�mi ¼ Yi�exp

½xT
i bþs

2=2� and g2i ¼ ðYi�miÞ
2
�varðYiÞ ¼ ðYi�miÞ

2
�mið1þmifÞ. Next, we calculate the matrix of the expectations of the

partial derivatives of gi with respect to the parameters

DT
i ¼

�Eð@g1i

@b Þ �Eð@g2i

@b Þ

�Eð@g1i

@s2Þ �Eð@g2i

@s2Þ

2
4

3
5¼ mi

xi xið1þ2mifÞ
1
2

1
2þmið2fþ1Þ

" #
:

Further, let

Si ¼ varðgiÞ ¼
m2i m3i

m3i m4i�m2
2i

" #
,

where mri ¼ EðYi�miÞ
r , for r¼ 1, . . . ,4.

The estimates of the unknown parameters are obtained as solutions to the optimal estimating equations
SNðZÞ �

PN
i ¼ 1 DT

i S
�1
i gi ¼ 0. Note that

S�1
i ¼ d�1

i

m4i�m2
2i �m3i

�m3i m2i

" #
,

where di ¼ m4im2i�m3
2i�m

2
3i. Hence, the optimal estimating equations can be written asX

i

mid
�1
i ½fm4i�m2

2i�ð1þ2mifÞm3igg1i�fm3i�ð1þ2mifÞm2igg2i�xi ¼ 0, ð4Þ
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