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a b s t r a c t

Sequential methods are developed for testing multiple hypotheses, resulting in a

statistical decision for each individual test and controlling the familywise error rate

and the familywise power in the strong sense. Extending the ideas of step-up and step-

down methods for multiple comparisons to sequential designs, the new techniques

improve over the Bonferroni and closed testing methods proposed earlier by a

substantial reduction of the expected sample size.

& 2012 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Motivation

The problem of multiple inferences in sequential experiments arises in many fields. Typical applications are in
sequential clinical trials with both efficacy and safety endpoints (Jennison and Turnbull, 1993) or several outcome
measures of efficacy (O’Brien, 1984; Pocock et al., 1987), acceptance sampling with several different criteria of acceptance
(Baillie, 1987; Hamilton and Lesperance, 1991), multichannel change-point detection (Tartakovsky and Veeravalli, 2004;
Tartakovsky et al., 2003) and in microarray experiments (Dudoit et al., 2003). It is often necessary to find the statistical
answer to each posed question by testing each individual hypothesis rather than giving one global answer by combining
all the tests into one and testing a composite hypothesis.

Methods developed in this paper aim to test multiple hypotheses based on sequentially collected data, resulting in
individual decisions for each individual test. They control the familywise error rate and the familywise power in the strong
sense. That is, both probabilities of rejecting at least one true null hypothesis and accepting at least one false null
hypothesis are kept within the chosen levels a and b under any set of true hypotheses. This condition is a multi-testing
analogue of controlling both probabilities of Type I and Type II errors in sequential experiments. As a result, the familywise

power, defined as the probability of detecting all significant differences at the specified alternative parameter values, is
controlled at the level ð1�bÞ (see Shaffer, 1995, for three alternative definitions of familywise power).
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Under these conditions, proposed stopping rules and decision rules achieve substantial reduction of the expected
sample size over all the existing (to the best of our knowledge) sequential multiple testing procedures.

1.2. Sequential multiple comparisons in the literature

The concept of multiple comparisons is not new in sequential analysis. Sequential methods exist for inferences about
multivariate parameters (Ghosh et al., 1997, Sections 6.8 and 7.5). They are widely used in studies where inferences about
individual parameters are not required.

Most of the research in sequential multiple testing is limited to two types of problems.
One type is the study of several ðk42Þ treatments comparing their effects. Sampled units are randomized to k groups

where treatments are administered. Based on the observed responses, one typically tests a composite null hypothesis
H0 : y1 ¼ � � � ¼ yk against HA: not H0, where yj is the effect of treatment j for j¼ 1, . . . ,k (Betensky, 1996; Edwards, 1987;
Edwards and Hsu, 1983; Hughes, 1993; Jennison and Turnbull, 2000, Chapter 16; O’Brien and Fleming, 1979; Siegmund,
1993; Wilcox, 2004; Zacks, 2009, Chapter 8). Sometimes each treatment is compared to the accepted standard (e.g.,
Paulson, 1962), and often the ultimate goal is selection of the best treatment (Jennison et al., 1982; Paulson, 1964).

The other type of studies involves a sequentially observed sequence of data that needs to be classified into one of the
several available sets of models. In a parametric setting, a null hypothesis H0 : y 2 Y0 is tested against several alternatives,
H1 : y 2 Y1 vs yvs Hk : y 2 Yk, where y is the common parameter of the observed sequence (Armitage, 1950; Baum and
Veeravalli, 1994; Novikov, 2009; Simons, 1967).

The optimal stopping rules for such tests are (naturally!) extensions of the classical Wald’s sequential probability ratio
tests (Govindarajulu, 2004; Wald, 1947; Wald and Wolfowitz, 1948; Siegmund, 1985). For the case of three alternative
hypotheses, Sobel and Wald (1949) obtained a set of four stopping boundaries for the likelihood-ratio statistic. Their
solution was generalized to a larger number of alternatives resulting in the multi-hypothesis sequential probability ratio tests

(Dragalin et al., 1999; Lai, 2000).

1.3. Our goal—simultaneous testing of individual hypotheses

The focus of this paper is different and more general. We assume that the sequence of sampled units is observed to answer
several questions about its parameters. Indeed, once the sampling cost is already spent on each sampled unit, it is natural
to use it to answer more than just one question! Therefore, there are d individual hypotheses about parameters y1, . . . ,yd of
sequentially observed vectors X1,X2, . . .

Hð1Þ0 : y1 2Y01 vs Hð1ÞA : y1 2 Y11,

Hð2Þ0 : y2 2Y02 vs Hð2ÞA : y2 2 Y12,

^

HðdÞ0 : yk 2 Y0d vs HðdÞA : yk 2 Y1d: ð1Þ

A few sequential procedures have been proposed for multiple tests similar to (1). One can conduct individual sequential
tests of Hð1Þ0 , . . . ,HðdÞ0 and stop after the first rejection or acceptance, as in Jennison and Turnbull (2000, Chapter 15).
Hypotheses that are not rejected at this moment will be accepted, conservatively protecting the familywise Type I error
rate (FWER-I).

Alternatively, one can assign level aj and the corresponding Pocock or O’Brien–Fleming rejection boundary to the jth
hypothesis. Then one conducts sequential or group sequential tests in a hierarchical manner, as proposed in Glimm et al.
(2010), Tamhane et al. (2010), and Maurer et al. (2011) for testing primary, secondary, and possibly tertiary endpoints of a
clinical trial. This procedure controls FWER-I at the level a¼

P
aj.

A different approach proposed in Tang and Geller (1999) and further developed in Bartroff and Lai (2010) allows to
control FWER-I by testing a closed set of hypotheses. Along with the individual hypotheses Hð1Þ0 , . . . ,HðdÞ0 , this method
requires to test all the composite hypotheses consisting of intersections \HðjkÞ

0 , 1r jkrd, 1rkrd. This results in
mandatory testing of ð2d

�1Þ instead of d hypotheses. As shown in Section 4, controlling the overall familywise Type I error
rate will then require a rather large expected sample size.

While focusing on the Type I FWER, these procedures do not control the familywise Type II error rate and the familywise
power. On the other hand, a Type II error, for example, on one of the tests of a safety clinical trial implies a failure to notice
a side effect of a treatment, which is important to control.

Notice that sequential tests of single hypotheses are able to control probabilities of both the Type I and Type II errors.
Extending this to multiple testing, our goal is to control both familywise error rates I and II and to do so at a low sampling

cost by computing the optimal stopping boundaries and the optimal stopping rule followed by the optimal terminal
decisions.
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