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a b s t r a c t

A non parametric method based on the empirical likelihood is proposed for detecting
the change in the coefficients of high-dimensional linear model where the number of
model variables may increase as the sample size increases. This amounts to testing the null
hypothesis of no change against the alternative of one change in the regression coefficients.
Based on the theoretical asymptotic behaviour of the empirical likelihood ratio statistic, we
propose, for a fixed design, a simpler test statistic, easier to use in practice. The asymptotic
normality of the proposed test statistic under the null hypothesis is proved, a result which
is different from the χ2 law for a model with a fixed variable number. Under alternative
hypothesis, the test statistic diverges. Some Monte-Carlo simulations study the behaviour
of the proposed test statistic.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The technology development and fast numerical techniquesmake it possible to consider and study statisticalmodelswith
a large number of variables. High-dimensional model refers to a model with a number p of explanatory variables increasing
to infinity as the number n of observations converges to infinity. When p diverges, traditional statistical methods may not
work with this kind of growth dimensionality.

Most of the literatureworks on high-dimensionalmodel use the LASSO (Least Absolute Shrinkage and SelectionOperator)
type methods, in order to automatically select the significant variables. The principle of these methods, introduced by
Tibshirani (1996), is to optimize a penalized process, more precisely, a process with a L1-type penalty. If the model contains
outliers, the parameter estimators by the least squaresmethodwith LASSO penalty have a large error. An alternativemethod
is then the penalized quantile method. Thereby, Dicker et al. (2014) consider a quantile model with seamless-L0 penalty
when the number p of explanatory variables is such that p → ∞, p/n → 0 as n → ∞. For a general quantile regression,
Wu and Liu (2009) propose the SCAD penalty, while, in the paper of Zou and Yuan (2008), a composite quantile regression
is considered with an adaptive LASSO penalty. The case p → ∞ is also considered in Fan and Peng (2004) for a non-concave
penalized likelihood method, when p5/n → ∞. Concerning the group selection methods for high-dimensional models, the
reader can find in Huang et al. (2012) a review of methods.
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All these methods are based first on the principle of selecting (automatically) the significant variables. Then, the
dependent variable is modelled only as a function of the significant variables, in order to have more accurate parameter
estimators and a better adjustment for the dependent variable.

If the goal is to have the most accurate prediction and also robust, in the case of a model with outliers, one possibility is
to consider the empirical likelihood (EL) method. But, for this type of method, in literature, most papers are devoted to the
case of fixed p. For a high-dimensional linear regressionmodel, we can refer first to paper Guo et al. (2013), when the design
is deterministic. High-dimensional data are also studied in Liu et al. (2013), where EL method is considered for a sequence
of i.i.d. random vectors with dimension p, when p → ∞ as n → ∞.

In this paper, we are interested in a change-point model, that is, a model which changes at some moment. The number
p of explanatory variables varies with the number n of observations and p can converge to infinity if n → ∞.

Since statistical techniques in high-dimension are fairly recent, there are not many papers in literature that address
the change-point problem in a high-dimensional model. Lung-Yut-Fong et al. (2012) proposes an approach for detection
of a change-point in high-volume network traffic. The asymptotic distribution of the test statistic proposed in Lung-Yut-
Fong et al. (2012), under the null hypothesis that there is no change-point, is the argsup of a Brownian Bridge. There are
some papers where LASSO type methods are used. Lee et al. (2015) consider a possible change-point in a high-dimensional
regression with Gaussian errors. The main result of the article is to show that the sparsity property is maintained, even if
there is a change in the model. There is no hypothesis test to decide the presence or absence of change in model. In Ciuperca
(2014), LASSO-type and adaptive LASSO estimators are studied, while in Ciuperca (2013) quantile model with SCAD penalty
is considered. These last two papers consider models with p fixed. In order to choose the change-point number, a model
selection criterion is also proposed by Ciuperca (2014).

To the authors’ knowledge, the EL technique has not yet been addressed in a high-dimensional two-sample model, that
makes the interest of this work. We study the asymptotic behaviour of the empirical likelihood ratio test statistic when the
design is deterministic.

We consider a first linear model:

Yi = Xt
iβ + εi, i = 1, . . . , n. (1.1)

Consider nowa second linearmodelwhich changes at observation k. It is called two-phasemodel, ormodelwith one change-
point:

Yi =


Xt

iβ + εi, 1 ≤ i ≤ k,
Xt

iβ2 + εi, k < i ≤ n, (1.2)

where Xi is a p × 1 vector of p explanatory variables, β and β2 are p × 1 vectors of unknown parameters and εi designates
the model error. The parameter β of the first phase of (1.2) coincides with that of (1.1). For models (1.1) and (1.2), Yi is
observation i of the response variable. The errors εi are supposed independent identically distributed (i.i.d), with mean zero
and finite variance σ 2.

We assume that the number p of explanatory variables Xi depends on the sample size n: p = pn, such that pn → ∞

as n → ∞. The change-point k of (1.2) also depends on n. The change in model (1.2) takes place far enough from the first
observation and sufficiently previous to the last observation. So, we suppose that limn→∞ k/n ∈ (0, 1).

In this paper, for given k, we use the empirical likelihood method to construct the confidence region for β − β2, or
equivalent to test the null hypothesis of no change inmodel (1.2). Under null hypothesis, themodel has the form (1.1), that is

H0 : β2 = β. (1.3)

The alternative hypothesis assumes that one change occurs in the regression parameters, that is

H1 : β2 ≠ β. (1.4)

The paper is organized as follows. In Section 2 we first present the EL method for the two-sample model. Some notations
used throughout the paper are defined and needed assumptions for the theoretical study are also announced. In Section 3,
we construct an empirical likelihood ratio test statistic and we study its asymptotic behaviour. The asymptotic distribution
under H0 of the test statistic is obtained, while, under H1, this statistic diverges. Next, in Section 4, we analyse the empirical
size and the empirical power bymeans of simulations, which confirm the performance of proposed test. A new critical value
is also proposed in order to improve the empirical size. The proofs of the main results are given in the Appendix followed
by some Lemmas and their proofs.

2. Preliminaries

In this section, we introduce the EL method for the two-sample model. Notations and assumptions are also given.
Under null hypothesisH0, that ismodel (1.1), letβ0 denote the true value of theparameterβ. Under alternative hypothesis

H1, that is model (1.2), the true values of β,β2, respectively, are β
0,β0

2.
In order to define the profile empirical likelihood (under H0 and under H1), we introduce the following random p-vector,

for all β ∈ Rp and i = 1, . . . , n:

zi(β) ≡ Xi(Yi − Xt
iβ).
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