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a b s t r a c t

Variance components analysis has been a standard means in family-based genetic data
analysis. The variance components technique treats genetic effects as random, and tests
whether variance components are zero using the likelihood ratio (LR) test. In the literature,
the asymptotic distribution of the LR is claimed to follow amixture chi-square distribution,
where the mixture proportions are calculated based on the binomial coefficients, a special
case in Self and Liang (1987). This threshold calculation, however, often yields conserva-
tive test results as discussed in a number of studies, especially inmulti-trait analyses. In this
work, we show that the LR statistic asymptotically follows a mixture chi-square distribu-
tion where the mixture proportions depend on the estimated Fisher information matrix in
both univariate and multivariate trait analyses. We provide a general approximation form
for the distribution of the LR under the null hypothesis of no genetic effects. We illustrate
our idea with three variance components models in genetic linkage analysis. The perfor-
mance of the new threshold calculation method is demonstrated via simulation studies,
and its application is further illustrated via a real data analysis.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Genes are the functional units responsible for inheriting biological variations in phenotypes from parents. Inheritance of
these characteristics of quantitative traits is attributed to multiple genes working in a coordinated manner. The detectable
regions of the genome that contain or are closely linked to causal genes are defined as quantitative trait loci (QTL). The
association between QTL and closely linked genes contributing to phenotypic variations is termed as genetic linkage. In
human linkage analysis, a variance components (VCs) model is a powerful tool for QTL mapping. In a VC analysis, genetic
effects are often partitioned as additive, dominance and polygene effects whereby each one is treated as random (Amos,
1994; Xu and Atchley, 1995). Consider two alleles (A and a) at a gene locus, the additive genetic effect measures ‘‘the
quantitative change in a trait that is associated with substituting one allele (one genotype) with that of another allele’’
(from Wikipedia) within a population. Specifically, ‘‘the additive effect is half of the difference between the mean of all
cases that are homozygous for one version of the allele (a/a) compared to the mean of all cases that are homozygous for the
other allele (A/A)’’ (from Wikipedia). The dominance effect is a non-linear genetic effect which measures the effect where
one allele masks the contribution of a second allele at the same locus. For example, if the effect of allele A masks the effect
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of allele a, then allele A is called a dominant allele and allele a is called a recessive allele (Lynch and Walsh, 1998). In case
of over-dominance, the effect of heterozygote genotype Aa is larger than the effect of homozygous genotypes AA and aa. In
plants, this is called the hybrid vigor. The polygene accounts for the effect of genes or QTLs not located on the same region
as the tested genes (Lynch and Walsh, 1998). Thus, the polygene effect is treated as the background gene effect. In a VC
linage analysis, the interest is to test whether the variance component of a genetic effect (i.e., additive and/or dominance
effect) is significantly different from zero. Likelihood ratio (LR) test is often applied for such purpose (Amos, 1994). Due to
irregular conditions (i.e., parameter boundary problem), the asymptotic distribution of the LR does not follow a regular chi-
square distribution, rather a mixture χ2 distribution, where the mixture proportions are calculated with standard binomial
coefficients, a special case discussed in Self and Liang (1987).

A number of studies have demonstrated the asymptotic distribution of LR under irregular conditions, see for example,
Chernoff (1954), Self and Liang (1987) and Shapiro (1988). Chernoff (1954) showed that the limiting distribution of the LR
has a mixture chi-square distribution when parameters of interest are on one side of a hyperplane, or in the first quadrant
within an R2 space. Self and Liang (1987) extended the Chernoff’s result to boundary cases. For a multivariate normal
distribution, Kudô (1963) showed the geometric nature of the LR with respect to the slipping means and its mixture chi-
square distribution. Kudô and Choi (1975) later on extended the argument to the inference of a one-sided test. Afterwards,
Self and Liang (1987) and Shapiro (1988) demonstrated that the boundary problem is equivalent to that of a restrictedmean
under amultivariate Gaussian distribution. Shapiro (1985) provided one simple proof of the large sample distribution of the
LR under the boundary condition for any convex cone. The author further developed a unified theory corresponding to the
inequality constrained testing in multivariate normal population for general cases (Shapiro, 1988).

In a univariate linkage analysis with a variance components model, the boundary problem occurs with variance
components testing. The distribution of LR in case 9 in Self and Liang (1987) has been commonly applied for a threshold
determination (e.g., Amos, 1994 and Hanson et al., 2001). This result is based on the assumption that the unknown
parameters are independent, leading to a diagonal variance–covariancematrix for unknownparameters. In reality, the above
assumption could be easily violated. This matter consequently leads to conservative hypothesis tests (Allison et al., 1999).

In a bivariate linkage analysis, Amos et al. (2001) proposed an approach to approximate the null distribution of the LR.
Again, their derivation assumes a diagonal Fisher informationmatrix. Additionally, they assumed that the genetic correlation
between two traits is perfectly correlated either positively (ρ = 1) or negatively (ρ = −1) in their derivation, which is
unrealistic in reality. Recently Morris et al. (2009) defined a constrained likelihood ratio test (CLRT). They applied Geyer’s
regularity (1994) to show the asymptotic distribution of the CLRT, but with uncertainty onwhether the global M-maximizer
can be attained. Because of this limitation, a simulation-based method was developed. However, the computational burden
limits its applicability.

In this work, we revisit the LR statistic in testing variance components in linkage analysis under three genetic
models (Almasy and Blangero, 2010; Xu and Atchley, 1995; Wang and Zeng, 2009; Nagy et al., 2014), and show that
it follows a mixture chi-square distribution. According to the distribution, we provide a new calculation of the mixture
proportions based on the estimated Fisher information matrix. The simulation results show the improved performance of
the approximation based on the newmixture proportion calculation method. We applied the method to a Genetic Analysis
Workshop (GAW) 18 dataset in which two genetic traits, systolic blood pressure (SBP) and diastolic blood pressure (DBP)
were measured (Almasy et al., 2014). One can analyze each trait separately and estimate genetic (additive and dominance)
effect size. Since the two traits are correlated, we may benefit by a joint analysis of multiple traits using a multi-trait VC
model. The rest of this paper is organized as follows. Section 2 introduces three classical VC models with both univariate
and multivariate trait analysis. The main result is illustrated in Section 3. Section 4 shows the performance of the new
approximation via simulation examples. We demonstrate the utility of the method via a real data analysis in Section 5.

2. Motivating models

The variance components model in a genetic linkage study is typically composed of both fixed and random effects, with
non-genetic effects treated as fixed and genetic effects treated as random (Goldgar, 1990; Amos, 1994). The total genetic
effect is typically decomposed into additive, dominance and polygenic effects and all are treated as random (Amos, 1994).
Below we briefly introduce three VC models and investigate the limiting distribution of the LR statistics under these model
setups.

2.1. Model I

Assuming that K families are collected and the phenotype for the kth family is denoted by yk with nk offsprings. For
example, yk can be a vector of SBP or DBP measures for members in the kth family. Under the variance components model
mapping framework, the total genetic effect is partitioned into several components expressed as

yk = µ1nk + ak + dk + gk + ek (1)

where µ is the overall mean; ak ∼ N(0,5kσ
2
a ) is the random additive effect of the major QTL; dk ∼ N(0,1kσ

2
d ) is the

dominance effect of QTL; gk ∼ N(0,8kσ
2
g ) is the polygenic effect that reflects the effects of unlinked QTLs; ek ∼ N(0, Ikσ 2

e )
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